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Abstract

Some data analysis applications may violate the assumptions of standard

(e.g., linear model) frameworks. In such cases, a common solution is to

develop a more suitable system-specific model, and from it derive the sta-

tistical tools necessary to conduct the desired data analysis. In this thesis,

we propose a method to model Psychomotor Vigilance Task (PVT) data

which is a test to measure alertness and is commonly used in psychology.

In particular, we focus on applying these methods to data from studies of

measuring sleep inertia in children. We will start by looking at relevant

methodological and application specific background. We will then look

at basic statistical analysis such as mean, median, and standard error

and plot some examples to get a sense of the data. Then we will intro-

duce a flexible model that better represents sleep inertia. We describe a

maximum likelihood based estimation procedure and analyze parameter

identifiability. Lastly, we use the likelihood ratio test to compare nested

models.
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Chapter 1

Introduction

In this thesis, we propose a method to model Psychomotor Vigilance Task (PVT)

data. Specifically, we propose a new model to study sleep inertia in children. We

analyze data from a study conducted by Dr. Mark Splaingard at Nationwide Chil-

dren’s Hospital (NCH) in Columbus, OH. Below we describe what sleep inertia is,

how the data has been collected, show examples, and discuss the motivation for this

study. Because of the highly variable reaction times in PVT data, a better mecha-

nistic model should improve the statistical analyses of PVT data, and help open up

new avenues of research.

1.1 Background on Sleep Inertia

Sleep inertia is the initial period after awakening in which delayed performance and

disorientation occurs. Decreased performance caused by sleep inertia can be found

in tasks such as reaction time, steadiness and coordination, visual perceptual tasks,

memory tasks, logical reasoning, time estimates, complex-behavior simulation tasks,

and cognitive tasks including mental arithmetic [18]. The specific sleep stage at the

time of awakening can affect the amount of sleep inertia experienced [16]. A person
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awakening from a slow wave sleep, a deep sleep (Non REM), is more affected by

sleep inertia than a person being woken up from a stage 1-2 or REM sleep. Stage 1

consists of a person drifting in and out of sleep and can be easily awoken, while stage

2 sleep is when eye movement stops and brain waves become slower. Stages 3 and 4

are the depest sleep stages. The body temperature starts to drop and the heart rate

slows. In REM sleep brain waves mimic activity during the waking state with eyes

remaining closed but rapidly moving. Sleep deprivation has been found to increase

the effects of sleep inertia, making it harder for sleep inertia to dissolve. Sleep inertia

has also been found to be more extreme when the core temperature cycle is at its

lowest point, which typically happens around 2AM [5]. Caffeine has been found to

minimize the effects of sleep inertia [9]. Newman et al [9] concluded in their study

that caffeine gum is a way to reverse the effects of sleep inertia.

The effects of sleep inertia can last anywhere from 1 minute to 4 hrs, which is

quite a wide range of time [18]. One study found that impairment caused by sleep

inertia could last for more than 2 hours after awakening [5]. The study found that

the subjects alertness and cognitive throughput scores increasingly improved during

the first hour and were constant by the second hour. These results supported a

previous hypothesis by Folkard, S. and Akerstedt, T. [4] that sleep inertia dissipates

asymptotically. The study measured alertness by using a visual analogue scale while

the cognitive throughput was measured by doing two minutes of addition. Subjects

were woken up after Stage 1, Stage 2, and REM sleep. The study only had a sample

size of one from a slow wave sleep cycle so they could only hypothesize that sleep

inertia would be worse after awakening from the slow wave sleep cycle.

Sleep deprivation occurs when a person does not get enough sleep which leads to

decreased performance and alertness. The longer a person is awake the worse their

performance and alertness becomes. Figure 1.1 shows the effects of sleep deprivation
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as measured by the PVT at 3 time intervals: 12, 36, and 60 hours awake. When

subjects experiencing sleep deprivation are given the PVT, their reaction times be-

come slower as time goes on, as shown in Figure 1.1 [19]. Results show that sleep

deprivation can be characterized by stochastic performance variability, with higher

variability towards the end of the PVT.

Figure 1.1: The effects of sleep deprivation as measured by the PVT from a study
conducted by Van Dongen [19].

Those experiencing sleep inertia have slower reaction times during the beginning

of the PVT with reaction times getting faster towards the end. Sleep inertia can be

thought of as the reverse process (on a different timescale) to sleep deprivation. We

will show examples of sleep inertia measured by PVT in the following section.



4

1.2 Psychomotor Vigilance Task (PVT)

An effective way to measure sleep inertia is by use of the psychomotor vigilance task

(PVT) [2, 10]. PVT is a reaction-timed task that measures how fast an individual can

respond to a visual stimulus. This “alertness test” is used to measure psychomotor

impairment. It has been widely used to measure effects of sleep deprivation, and

recently it has also been used to measure the effects of sleep inertia. The PVT

hand-held device consists of an LED display window that provides a light to the

user along with a button that the user presses when they see the light. The light

flashes randomly every several seconds for 10 minutes. In particular, the inter-event

times follow a random uniform distribution on the range [2sec,10sec][17]. Once the

light flashes, the PVT starts a counter in milliseconds and stops the counter once

the subject presses the button, recording each response time (RT) for the duration

of the 10-minute test. If a subject presses the button when the light does not flash,

presses a wrong button, holds down on the button too long, or does not respond after

sixty-five seconds, then an error message appears instead of the reaction time to the

user. Most adults have response times by 500 milliseconds, so if a response is longer

than 500 milliseconds it is considered a lapse, but young children have much more

variable reaction times.

1.2.1 Example Data and Motivation

Figures 1.2 and 1.3 show example PVT data. The x-axis represents the time (in

seconds) when the visual stimulus appeared and the y-axis represents the time it

took the child to respond to the visual stimulus (in ms). We wanted to showcase

the variability in the data. Figure 1.2 shows two different PVTs from the same

child, given at different times. Panel (a) is a PVT given while the child was awake

(baseline), and panel (b) is a PVT given after the child is awoken from deep sleep
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(cycle2). In the baseline PVT the reaction times are all close together and not

highly variable. In the cycle2 PVT, the reaction times start off higher and become

stationary, with some high PVT reaction times near the end of the test. These higher

response times may be outliers or something else is happening toward the end of the

PVT. The beginning of this PVT highlights the sleep inertia effect and the end of the

PVT possibly showcases some sort of distraction and/or fatigue. Figure 1.3 shows

more examples of the data. This figure shows high reaction times in the beginning

of the PVT along with fatigue at the end, examples of sleep inertia, and an example

of just fatigue at the end of the 10 minute PVT. There are multiple problems with

the data that one could study. For example, PVT times have a bigger spread at the

beginning that decreases then may increase again after a few minutes. Questions

regarding our motivation for a better model include: How significant is the initial

transient improvement in response times? What does the fatigue at the end (present

in children but is not as apparent in adults) look like? Is the distribution of reaction

times heavy tailed or bimodal? Since the data is so variable and there are many

different cases, there is a need for a more flexible model.
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Figure 1.2: Panel (a) shows a baseline PVT of a 12 year old child with no signs
of sleep inertia or fatigue. Panel (b) shows the same child after being awoken up
following their second cycle of deep sleep, showing effects of sleep inertia along with
some fatigue at the end.
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Figure 1.3: Panel (a) shows a baseline PVT from a 6 year old child with high reaction
times early on and fatigue at the end. Panel (b) shows a cycle2 PVT from a 5 year
old child with effects of sleep inertia. Panel (c) shows fatigue at the end of the 10
minute PVT. Panel (d) possibly shows a cycle1 PVT from a 12 year old child with
effects of sleep inertia.
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1.2.2 Summary of Data Collection

The data we will analyze in this thesis comes from a study conducted by Dr. Mark

Splaingard at Nationwide Children’s Hospital in Columbus, Ohio looking at sleep

inertia effects in children ages 5-12 [6]. The response times for each child were

measured by using PVT for a ten minute period. Children performed the PVT

about 90 minutes before going to bed, denoted baseline, to give a control for the

study. The children were then woken up twice within the night, denoted cycle 1 and

cycle 2, after a stage 4 sleep cycle (deep sleep) and then given the PVT. Children

in the study were woken up by an alarm that went off for one minute intervals with

ten seconds between each alarm. This alarm continued for up to five minutes. If the

child did not wake up, then a research assistant would wake up the child and take

them to the room where the PVT was administered. The room where the PVT was

given was well lit and the research assistant was present for the entire duration of

the PVT. One week after the first night, the children were brought back for another

night of testing under the same conditions.

The data set includes reaction times for each time point within the 10-minute

PVT for a set of 168 children. For example, at 10.1 seconds in the PVT test a child

had a reaction time of 600.2 milliseconds. This data set also includes the child’s

identification number, their age, and the cycle at which the test occurred. The 168

subjects each have up to six 10-minute PVTs recorded. These six 10-minute PVT’s

include a baseline, cycle 1, and cycle 2 test for two separate nights. Looking at the

data, there is high variability. The variability seems to increase as the age of the

children decreases. There is also high variability towards the end of the PVT in the

data. We hypothesize that this is due to children getting distracted and/or fatigued

with the test, since ten minutes is a long time for children to stay continually focused

on a mundane task.
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1.2.3 Data Analysis

Before data analysis could be conducted, it was necessary to clean up the data. The

raw data was stored in Matlab in an .m file. Each .m file corresponded to the child

and within each .m file were six matrices representing the data collected from each

trial/cycle. Some of the children did not show up for some of the testing and so

those trials/cycles were stored as empty matrices. There were 168 .m files. The main

goal was to take the Matlab files and store them in a SQL database called Postgres.

Postgres is a free SQL program that has a graphical user, and can interface with the

statistical software R [11]. Storing the data in a database makes it easier to deal with

and many programming languages can run SQL queries within them. A database

was created in Postgres. One table was created to store the data from the .m files

and another related table was created to store the childs ID, age, and gender.

Typically, experimentalists only take into account the mean reaction time over

the entire 10 minute PVT. Below, in Figure 1.4, shows the mean reaction times from

each age group, for each cycle, along with the standard error.
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Figure 1.4: Mean reaction times with standard error of the 10 minute PVT for each
age group for each cycle.

Since five year olds have a large standard error, we plotted histograms of individ-

ual five year olds. Figures 1.5 and 1.6 show histograms of six 5 year old children for

the 10 minute PVT. The histograms show that the data does not follow a normal

distribution and that the distribution is skewed.
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(a) (b)

(c) (d)

Figure 1.5: Histograms of PVT response times for 5 year old children.
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(a) (b)

Figure 1.6: Two more histograms of 5 year old children.

We computed the mean, median, and standard error (SE) of response times of

each age group for the three different PVT type tests. Below are three tables of

summary statistics (mean, median, SE) from the data by age for baseline, cycle1,

and cycle2; see Tables 1.1, 1.2, and 1.3.
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Table 1.1: Baseline (Night 1) Summary Statistics - This table shows the mean,
median, and standard error of PVT response times for each age group. This illustrates
the difference between the mean and median; indicating a skewed distribution. Tables
for Cycle1 and Cycle2 were constructed in the same manner.

Age n Mean Median SE

5 11 1192.776 667 542.574

6 8 888.3624 578 368.2887

7 23 603.4847 421 177.9456

8 16 586.3886 405 195.9833

9 26 433.4736 362 67.87197

10 26 402.1444 318 95.86562

11 22 359.8007 313 51.33567

12 18 349.1324 294 99.81827

Table 1.2: Cycle1 (Night 1) Summary Statistics

Age n Mean Median SE

5 13 1894.195 920.5 774.9956

6 8 1125.743 665 453.9564

7 23 810.3583 477 293.9945

8 16 656.0738 444 296.6032

9 25 511.4172 420 94.42216

10 26 464.5826 373 78.1233

11 21 428.5572 362 63.87834

12 18 441.4946 330 184.3794
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Table 1.3: Cycle2 (Night 1) Summary Statistics

Age n Mean Median SE

5 12 2451.479 986 1056.254

6 9 1337.08 700 742.7786

7 22 943.6937 501 328.5721

8 15 831.3173 508 253.3328

9 25 667.7455 455.5 175.4443

10 24 551.6224 392 180.307

11 22 514.6285 384 150.9108

12 18 542.4616 361.5 197.1318

The summary statistics illustrate that for most age groups, the mean and median

are far apart which was evident in Figure 1.6. This suggest that the data is skewed

and the mean may not be the best summary statistic for these data. Looking at just

the mean or median may not be the best practice for performing statistical analy-

sis, especially for children, because the data is highly variable and those summary

statistics don’t capture the whole picture of what is going on in the data.

1.3 Objectives

The main objective of this thesis is to answer the question, “How do we build a better

model to study sleep inertia?” Current methods assume a stationary distribution and

just report the mean and/or the median. We want to build a more flexible model

that allows for specific transient trends at the beginning, (e.g. learning/sleep inertia),

and non-stationary effects at the end (e.g. fatigue/distraction) of the distribution

so that we can quantify the stationary phase of the data (and analyze that) while
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simultaneously correcting for, and thus quantifying those non-stationary effects.

We are proposing a general model for PVT data to model reaction times (RT)

in children under the effects of sleep inertia. We also consider a simple model is a

special case of the full model, which doesn’t account for a change in mean RT over

time, i.e. doesn’t explicitly model sleep inertia effects. The following methods will be

used. Maximum Likelihood Estimation will be used to find the best fit parameters

for our models. We will also be testing to see if we have any identifiability issues

with our best fit parameters in our model. To test this, we will be using likelihood

profiling. To test which of the two models fit better, we use a likelihood ratio test

along with the Akaike Information Criterion (AIC) and the Bayesian Information

Criterion (BIC) values.

1.4 Model Framework

Our main goal is to develop a nonlinear model that changes over time to better model

PVT reaction times in children, under the effects of sleep inertia. This will also lay

the groundwork for further generalizations that apply more broadly to other PVT

data.

Reaction times during sleep inertia start off slow and exponentially get faster. For

this reason our model for reaction times starts has an exponential decreasing mean.

The model for sleep inertia can be represented by the following:

Yi = y0 +Xi (1.1)

where Yi is the ith response time, y0 is the minimum possible response time, and Xi

is a gamma distributed random variable with mean µi = τ∗ + τoe
−rti and variance

cµi. To model the above non-stationary effects on the mean and variance of Xi, τo is
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the scaling factor of the exponential decay function which is used to explicitly model

sleep inertia, r is the exponent in the same exponential decay function, ti is the ith

time point (where the time vector has a length of ten minutes as in the PVT), c is

the constant that is being multiplied by µi to make our variance proportional to the

mean, and τ∗ is the constant mean value for the second part of the model.

The gamma distribution was chosen as the distribution for each time index, ti.

Reaction times will never go below zero, which makes the gamma distribution prefer-

able since its range is from zero to infinity. The gamma distribution is also a quite

flexible, making it ideal for our model. For more details on the gamma distribution,

see Appendix (5.1).

As a special case, where there is no initial transient improvement in performance,

we will consider the special case of our model where τo = 0, r = 0:

Yi = y0 +Xi (1.2)

where Xi is gamma distributed with µ = τ∗ and variance cµ. Simulated data was

created to test our model. Figure 1.7 below shows simulated data illustrating the

difference between the two different models.
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(a) Simulated data without the effects of sleep inertia with parameters
y0 = .256,c = 0.5,and τ∗ = .713. The mean is µ = 0.936 and the
variance is var = 0.366.
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(b) Simulated data created with the effects of sleep inertia in place
with parameters τo = 4, r = 0.02, y0 = .256,c = 0.5,and τ∗ = .713.
The mean is µ = 1.183 and variance, var = 0.594.

Figure 1.7: Simulated data from the simple model (a) and the full model (b).
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Chapter 2

Methods

In this section we will discuss the methods to be used to implement our model, meth-

ods to develop estimators for the parameters in the model, methods for identifiability

analysis, and methods to find the best fit model for specific data.

2.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation is a method for estimating parameter values of

a statistical model given the observations [14]. These estimates are often called

MLEs. In order to find the MLE, the likelihood function is needed: L(θ;x). The

likelihood for an independent and identically distributed (i.i.d) sample x of size n

from a distribution with probability density function f is defined by the joint density

function at the sample (data):

L(θ;x) =
n∏
i=1

f(xi; θ) (2.1)
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where θ is the parameter vector. The maximum likelihood estimate (MLE) is the

model parameter(s) θ̂ that maximize the likelihood function defined as

θ̂ = {arg max θL(θ;x)} (2.2)

To find θ̂ in practice it is often easier to use the negative natural log of the likeli-

hood function: nLL(θ;x) = ln(L(θ;x)). By properties of logs, θ̂ also minimizes the

nLL(θ;x) and we can write

nLL(θ;xi) = −
n∑
i=1

lnf(xi|θ) (2.3)

One of the properties of MLEs and likelihood functions is that they can be used

to test hypothesis about models and their parameters. In the model that is being

generated, the MLE method will be used to find the parameters that best fit our

data and are then used to perform hypothesis testing on the model.

2.1.1 Finding MLEs

The MLE θ̂ can be found analytically or computationally. To find MLEs analytically

we use the negative likelihood function and find the partial derivatives of the function

for each parameter. We then set each partial derivative to zero and solve the system

of equations for θ. Specifically, if θ = [θ1, ..., θr], we solve

∂

∂θ1
nLL(θ, x) = 0 (2.4)

... (2.5)

∂

∂θr
nLL(θ, x) = 0 (2.6)

If this cannot be done analytically then we need to solve the system of equations



20

computationally.

2.1.2 Computational Optimization to Find MLE

We want an estimation method that is robust to the model having identifiability

issues, and we want to retain information to use in subsequent identifiability analyses.

We can use the optimization function optimx in R using methods Nelder-Mead and

BFGS [8] for this optimization procedure, where we want to find the parameters θ

that minimize the negative log likelihood function.

Each optimization run must be initialized with a parameter set close to the true

MLE as possible. To define a plausible range of inital parameter values, we first

looked at crude estimates as follows. For τ∗, we used the mean of the data set. The

scaling factor of the variance, c, was set to 0.5. We used these crude estimations of

the parameters c and τ∗ along with n being set to the number of time points from

our data set to solve for y0 by using the function uniroot.

For the general model, we know that the data shows an exponential decay followed

by a constant value. We can use this to help decide on the crude estimation of the

parameters. Just as in the simple model τ∗ was found by using the mean of the

data set. τo was found by scaling τ∗ by 0.2. The parameter r was found by taking

ln(20)/120 since the data shows that the exponential decay levels out around 120

seconds. y0 and c are the same as the simple model.

Optimx is a generalized wrapper function for optimization. It allows for a num-

ber of methods to all be used at once including BFGS, spg from the BB package,

ucminf, nlm, and nlminb[8]. Optim uses Nelder-Mead, quasi-newton, and conjugate

gradient algorithms as well as box-constraint optimization methods. An initial vector

of parameters to be optimized and the function to be maximized/minimized are a

requirement to run optimx. For our analysis, methods Nelder-Mead and BFGS were
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used, and the maximum number of iterations was increased to 50000. The best fit

parameter estimation and the convergence code was used to determine which param-

eter values from which method should be used. The method Nelder-Mead and BFGS

produced the best fit parameters.

To ensure the best fit parameters were being estimated, and to collect information

to be used in subsequent identifiability analysis, we created a function called paral-

lel.optimx which runs N optimization routines via optimx at the same time, each

starting with a different initial parameter set. To run N optimizations, a plausible

range for each parameter was defined. We then randomly sampled N initial param-

eter sets from this range. These random sampled estimates were then run through

optimx and the best fit was selected by choosing the minimum negative log likelihood

value.

2.2 Parameter Estimation and Identifiability

A model is identifiable if the best fit parameter estimates of a model are unique.

A model that has identifiability issues is one where at least one parameter estimate

in the model can be more than one value and still correspond to the same negative

log likelihood value [3, 12]. Two methods that can be used to assess if there are

identifiability issues in parameter estimation are by looking at pairwise scatter plots

of MLEs of the parameters via parallel.optimx and performing likelihood profiling

on each parameter. Practical identifiability occurs when multiple parameter sets are

very close to the optimum, which throws off computational optimization routines.

We assumed model identifiability in two ways (see Sections 2.2.2 and 2.2.3 below).

The likelihood profiling method relies on likelihood ratio tests, which we will first

review in the next section.
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2.2.1 Likelihood Ratio Test

The log likelihood ratio test is used to compare two statistical models: a null model

against an alternative model [7]. The null model is a special case of the alternative

model or the “simple” model, while the alternative model is the “full” model.

H0 : θ = θ0 (2.7)

H1 : θ = θ1 (2.8)

A critical value and a p-value are computed to determine whether or not the sim-

ple model is rejected. The probability distribution for the likelihood ratio test can

be approximated using Wilk’s theorem. The likelihood ratio is also justified by the

Neyman-Pearson lemma which shows that the likelihood ratio test is the most pow-

erful (the best) test at significance level α.

The likelihood ratio test is constructed as:

Λ(x) =
L(θ0|x)

L(θ1|x)
or alternatively, (2.9)

Λ(x) =
L(θ0|x)

sup{L(θ|x) : θ ∈ {θ0, θ1}}
(2.10)

where θ0 corresponds to the simple model and θ1 corresponds to the full model, while

the likelihood function is the suprema of the supremum function. The likelihood ratio

is small if the full model fits better than the simple model. The decision rule is as

follows:

If Λ > c, do not reject H0 (2.11)

If Λ ≤ c, reject H0 (2.12)

Where c is the critical number chosen for a specified significance level, α. The
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numerator in the likelihood ratio test corresponds to an observed outcome from the

simple model while the denominator corresponds to the maximum likelihood of an

observed outcome varying the parameters over the whole parameter space. The lower

the number the less likely it is to occur under the simple model and vice versa. In

order to run the likelihood ratio test on models, the models must be nested. That is,

the full model can be transformed into the simple model under a certain constraint.

Wilk’s theorem states that as the sample size n approaches infinity, the test statis-

tic, −2 log(n), for a nested model will asymptotically be chi-squared, χ2, distributed

with degrees of freedom equal to the difference in dimensionality of θ ∈ θ0 when H0

is true. This theorem is used in the likelihood ratio, Λ, to compare −2 log(Λ) to the

χ2 value corresponding to a given statistical significance value. This statistical test

uses the test statistic D:

D = −2ln

(
L(θ0|x)

L(θ1|x)

)
(2.13)

= 2ln

(
L(θ1|x)

L(θ0|x)

)
(2.14)

= 2 [ln(L(θ1|x))− ln(L(θ0|x))] (2.15)

where the degrees of freedom are df1−df0 i.e., the number of parameters of the simple

model subtracted from the numbers of parameters from the full model.

To conduct the likelihood ratio test for two nested models we used lr.test in

R. Inputs used to run this test are the two models to be compared, objects from a

class or the negative log likelihood value for each model can be used, the significance

test, and the degrees of freedom. The function returns the test statistic value, the

χ2 critical value, the p-value, and the decision. The decision ”greater” indicates that

we reject the null hypothesis if the p-value is less than α, otherwise we do not reject

the null hypothesis.
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2.2.2 Scatter Plots

To see if there are any identifiability issues with the parameter estimates, we can use

pairwise scatter plots of the candidate MLEs estimated from different initial condi-

tions by using parallel.optimx (see section 2.1.2 for details). If there are identifiability

issues with the parameter estimates, the scatter plots will have an apparent pattern

to them. If no pattern is present, then there is not an identifiability issue. Ideally,

you want the points to be scattered randomly with best estimates clustered tightly

together. For example, if an identifiable combination (i.e., a quantity that can be

estimated) in a given model is m =
θ1
θ2

, where θ1 and θ2 are parameters best estimate,

the θ1−θ2 scatter plots will show a linear relationship, θ1 ≈ mθ2. Likelihood profiling

is another tool that can be used to reveal identifiability issues with parameters.

2.2.3 Likelihood Profiling

Likelihood profiling is a useful tool for finding approximate confidence intervals for

best fit parameters θ̂ [13]. It is based on the asymptotic χ2 distribution of the

likelihood ratio test. If we have a model with parameters, θ, the profile likelihood

function for the jth parameter, θj defined as

PLj(δ) = argmin
θi,i 6=j

nLL(θ|x, θj = δ). (2.16)

For every value of θj, PLj(δ) is the negative log likelihood value for the best fit model

with constraint θj = δ, where δ values range over an interval containing θ̂j.

We can use likelihood profiling to construct confidence intervals as follows. Using

the likelihood ratio test for the best fit (full) model and a model with fixed θj = δ,

we can use the appropriate χ2 distribution (See section 2.2.1) to find the negative

log likelihood value threshold for the constrained model, below which there is no
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significant difference between the goodness of fit of the full and constrained models

to the given data. Thus the 100%(1−α) confidence interval for θj is the set of values

of δ values satisfying

2
[
−nLL(θ̂) + PLj(δ)

]
< χ2

1−α(1) (2.17)

where χ2
1−α(1) is the 1− α quantile of a χ2 distribution with one degree of freedom.

This yields the negative log likelihood threshold

nLL(θ̂) +
1

2
χ2
1−α(1). (2.18)

2.3 Model Selection

The full model that we have created can be thought of as a general model. The simple

model is a special case of the full model where τo and r have been set to zero. Since

these two models are nested models we can also use Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) to assess which model fits the data

better. The likelihood ratio test is an asymptotic approach that compares two models

by using a test statistic that is asymptotically χ2 distributed. Information theoretical

approaches like the use of AIC or BIC for model selection provides a complimentary

way of comparing which models best fit the data[15]. AIC = 2k − 2ln(L̂) where k

is the number of parameters and L̂ is the maximum value of the likelihood function

for the model. The preferred model is the model with the lowest AIC value. BIC =

ln(n)k − 2ln(L̂) where n is the sample size, k is the number of parameters, and L̂ is

the maximum value of the likelihood function is used in a similar way, but is based on

the likelihood function and differs from AIC in that the penalty term for the number

of parameters is larger in BIC than AIC. These three goodness of fit tests will be
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used to asses which models best fit a given data set.
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Chapter 3

Results

Our goal is to propose a procedure for finding the best fit parameter estimates for

the full and simple model and whether they are identifiable. We will start by doing

this for the simple model. Then we consider the full model and discuss approaches

to deal with any identifiability issues that may arise.

3.1 Simple Model

Recall, our simple model is:

Yi = y0 +Xi (3.1)

where Xi ∼ Gamma(µ = τ∗, var = cµ). For details on what the parameters mean,

see the Model Framework section.

3.1.1 Parameter Estimation

To use our model we first need to find the maximum likelihood estimator of our

gamma distribution. The mean and variance for the gamma distribution are given
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below. Let X be a gamma distributed random variable with shape α and rate β.

Then

E[X] =
α

β
V ar(X) =

α

β2
. (3.2)

Let µ = E[X] and v = V ar(X). Then

µ =
α

β
(3.3)

v =
α

β2
=

1

β
· α
β

(3.4)

=
µ

β
=⇒ β =

µ

v
. (3.5)

Note that,

α = βµ (3.6)

since

β =
µ

v
=⇒ α =

µ2

v
. (3.7)

Let xi = Yi − y0, which represents our gamma distributed random variable and let

var = cµ. We can substitute the following in as such:

αi =
µ2
i

cµi
=
µi
c

(3.8)

βi =
µi
cµi

=
1

c
(3.9)

θ = τo, r, τ∗, y0, c (full model) (3.10)

θ = τ∗, y0, c (simple model) (3.11)



29

Will will be finding the negative log likelihood nLL function since it is easier to use

in application.

nLL (θ|~x) = − ln

(
n∏
i=1

f (~x|θ)

)
= − ln


n∏
i=1


1

c

µi
c

Γ
(µi
c

)xµic −1i e
−

1

c
xi




= − ln


∏n

i=1

1

c

µi
c∏n

i=1 Γ
(µi
c

) n∏
i=1

x

µi
c
−1

i

n∏
i=1

e
−

1

c
xi



= − ln


1

c

∑n
i=1

µi
c∏n

i=1

(
Γ
(µi
c

)) n∏
i=1

x

µi
c
−1

i e

∑n
i=1−

1

c
xi



− ln

(
n∏
i=1

f (~x|θ)

)
= − ln


1

c

∑n
i=1

µi
c∏n

i=1

(
Γ
(µi
c

))
− ln

 n∏
i=1

x

µi
c
−1

i



− ln

e∑n
i=1−

1

c
xi



=

− ln

(
1

c

)
c

n∑
i=1

µi +
n∑
i=1

ln
(

Γ
(µi
c

))
−

n∑
i=1

(µi
c
− 1
)

ln (xi) +
1

c

n∑
i=1

xi

(3.12)
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Substituting equations 3.8, 3.9, and 3.11, for µi and xi (where ~Y is the vector of data

points Yi) we have the negative log likelihood function for the simple model:

nLL(y0, c, τ∗|~Y ) =
ln c

c

n∑
i=1

(τ∗) +
n∑
i=1

ln
(

Γ
(τ∗
c

))
−

n∑
i=1

(τ∗
c
− 1
)

ln (Yi − y0) +
1

c

n∑
i=1

(Yi − y0)
(3.13)

We can find the partial derivative of each parameter and set it equal to zero so that

we have a system of equations to solve for:

∂

∂c
nLL =

− ln c

c2
(nτ∗) +

n∑
i=1

τ∗Γ
′
(τ∗
c

)
c2Γ

(τ∗
c

)
+

n∑
i=1

τ∗ ln (Yi − y0)
c2

+
ny0 −

∑n
i=1 Yi

c2
= 0

∂

∂y0
nLL =

n∑
i=1

(
τ∗ − c

c (Yi − y0)

)
− n

c
= 0

∂

∂τ∗
nLL =

n ln c

c
−

n∑
i=1

Γ′
(τ∗
c

)
cΓ
(τ∗
c

) − n∑
i=1

ln (Yi − y0)
c

= 0

(3.14)

Re-writing the partial derivative equation for y0, we get:

n

τo
−

n∑
i=1

1

Yi − y0
= 0 (3.15)

We are able to solve for y0 computationally for a given c and τ∗, which reduces the

number of parameters we need to estimate computationally to two (c and τ∗). The

function uniroot in R was used to find the root of y0 over [0,min(Yi)] [1]. We

are unable to analytically solve this system of equations for all three parameters.

We used our function parallel.optimx in R to find the parameter estimates. Using

the previously described optimiation method to find the MLE form this system of
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equations, we can then use pairwise scatter plots of the MLEs and likelihood profiling

to check for identifiability issues with our parameter estimation procedure.

3.1.2 Identifiability: Pairwise Scatter Plots

Figure 3.1 shows the pairwise scatter plots for the MLE’s for each parameter from

data simulated under the simple model with no sleep inertia effect. Looking for

patterns in the scatter plots will help determine if there are identifiability issues. In

3.1, the red x’s are parameter estimates for the best fit parameters with a negative

log likelihood value within 5% of the best fit parameters out of 1000 runs (each

starting from different initial parameter values) of our estimation procedure (see

Section 2.1.2). The black dots are the top 10 best fit estimates. This plot does not

show any signs of non-uniqueness with the best fit parameters since the black dots

cluster tightly for all the pairwise scatter plots.
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Figure 3.1: A look at the pairwise scatterplots for the best parameter estimates, for
simulated data generated from and fit with the simple model. The red x’s are a
negative log likelihood value within 5% of the best fit parameters set out of 1000
runs starting at different initial parameter values. The black dots are the top 10 best
fit estimates.

3.1.3 Identifiability: Likelihood Profiling

Another way to check for identifiability is by using likelihood profiling. By plotting

the likelihood profiling for each parameter we can check for any non-uniqueness in the

estimate for an isolated parameter. A look at the likelihood profiling with confidence

intervals are in Figure 3.2. The red horizontal line represents the 95% confidence



33

interval which was found by

nLL(θ̂) +
1

2
χ2
0.05(1) (3.16)

Note that the vertical lines are best fit parameter estimates (i.e. the τ̂∗ with the

minimum negative log likelihood value). Figure 3.2 (a) shows y0 fixed while c and τ∗

are allowed to vary. The likelihood profiling for y0 has a minimum point and does

not have indications of identifiability issues. Figure 3.2 (b) shows c fixed while y0

and τ∗ are allowed to vary. The likelihood profiling for c also has a minimum point

without identifiability issues. Figure 3.2 (c) shows τ∗ fixed while y0 and c are allowed

to vary. The likelihood profiling for τ∗ also has a minimum point and again, without

apparent identifiability issues.
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Figure 3.2: Likelihood profiling fitting the simple model to simulated data without an
initial transient improvement in performance for (a) y0, (b) c, and (c) τ∗. Simulated
data came from the simple model with y0 = .256, c = 0.5, and τ∗ = .713.

These results show that, for the simulated data with no sleep inertial (generated

under the simple model), no identifiability issues are present and we have a best

estimate for the parameters, y0, c, and τ∗. Thus, we see that in the simple model,

the MLEs are unique. This shows that this model has an identifiable (or unique)
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parameter set.

3.2 Full Model

Recall, from Section 1.4 that the full model is:

Yi = y0 +Xi (3.17)

where Xi ∼ Gamma(µ = τoe
−rti + τ∗, v = cµ).

3.2.1 Parameter Estimation

The negative log likelihood function for the full model is the following:

nLL =
ln c

c

n∑
i=1

(
τoe
−rti + τ∗

)
+

n∑
i=1

ln

(
Γ

(
τoe
−rti + τ∗
c

))
−

n∑
i=1

(
τoe
−rti + τ∗
c

− 1

)
ln (Yi − y0) +

1

c

n∑
i=1

(Yi − y0) (3.18)
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The MLE for the full model is a root of the following system of equations:

∂

∂c
nLL =

− ln c

c2

(
nτ∗ +

n∑
i=1

τoe
−rti

)
+

n∑
i=1

τoe
−rti + τ∗Γ

′
(
τoe
−rti + τ∗
c

)
c2Γ

(
τoe
−rti + τ∗
c

)
+

n∑
i=1

τoe
−rti + τ∗ ln (Yi − y0)

c2
+
−ny0 +

∑n
i=1 Yi

c2

∂

∂y0
nLL =

n∑
i=1

(
τoe
−rti + τ∗ − c
c (Yi − y0)

)
+
n

c

∂

∂r
nLL =

− ln c

c

n∑
i=1

τotie
−rti +

n∑
i=1

τotie
−rtiΓ′

(
τoe
−rti + τ∗
c

)
cΓ

(
τoe
−rti + τ∗
c

)
+

n∑
i=1

τotie
−rti ln (Yi − y0)

c

∂

∂τo
nLL =

ln c

c

n∑
i=1

e−rti −
n∑
i=1

e−rtiΓ′
(
τoe
−rti + τ∗
c

)
cΓ

(
τoe
−rti + τ∗
c

) −
n∑
i=1

e−rti ln (Yi − y0)
c

∂

∂τ∗
nLL =

n ln c

c
−

n∑
i=1

Γ′
(
τoe
−rti + τ∗
c

)
cΓ

(
τoe
−rti + τ∗
c

) − n∑
i=1

ln (Yi − y0)
c

(3.19)

As in the system of equations with three equations of the simple model, we are

not able to analytically solve for the system of equations for the full model. Our

parallel.optimx function in R was also used to find the parameter estimates for the

five parameters.

3.2.2 Identifiability Analysis

Mathematically, we have identifiability issues with the full model while our simple

model does not. When we look at µ = τoe
−rti + τ∗ and take the taylor expantion of
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e−rti , we get

e−rti = 1− rti +
(rti)

2

2!
− (rti)

3

3!
+ ... ≈ 1− rti +O(rti)

2 (3.20)

Then,

τoe
−rti + τ∗ ≈ τo + τ∗ − τorti (3.21)

There are three cases when we expect to have identifiability issues. The first case is

when r is small (i.e., roughly when 0 ≤ r < 0.01), the mean of the gamma random

variable in our model is

τoe
−rti + τ∗ ≈ τo + τ∗ (3.22)

This presents an identifiability problem because we are trying to estimate τo and τ∗

separately, but only the combination τo + τ∗ is identifiable. This leads to trade-offs

between the MLEs for τo and τ∗ when they yield the same sum.

Secondly, when r is really big, then the sleep inertia effect only lasts for a very

short time since the curve e−rti drops down quickly as a function of ti. In that case,

τoe
−rti + τ∗ ≈ τ∗ for mot or all ti and hence the likelihood calculation is basically

independent of τo.

Lastly, if τo ≈ 0, then r has no input on the likelihood values. Thus if τo is small,

the likelihood also be essentially independent of r.

3.2.3 Identifiability: Pairwise Scatter Plots

Figure 3.3 shows the pairwise scatter plots for the MLE’s for each parameter from

data simulated under the full model with sleep inertia effect. The red x’s are param-
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eter estimates for the best fit parameters with a negative log likelihood value within

5% of the best fit parameters out of 1000 runs (each starting from different initial

parameter values) our estimate procedure (see Section 2.1.2). The black dots are the

top 10 best fit estimates. The top 10 best fit estimates all cluster closely together,

showing no signs of non-uniqueness with the parameter estimates, which implies no

identifiability issues.
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Figure 3.3: Pairwise scatter plots for the best parameter estimates, for simulated
data generated from and fit with the full model. The purple x’s are a negative log
likelihood value within 5% of the best fit parameter set out of 1000 runs starting at
different initial parameter values. The black dots are the top 10 best fit estimates,
which cluster tightly and indicate unique parameter estimates.
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3.2.4 Identifiability: Likelihood Profiling

Figure 3.4 shows the likelihood profiling with the confidence intervals for the five

parameters, τo, r, y0, c, and τ∗. Just as in the simple model, the 95% confidence

interval is the red horizontal line and the blue vertical line is the best fit parameter.

The likelihood profiling plots for each parameter have a minimum point, showing no

identifiability issues.
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Figure 3.4: Likelihood profiling fitting the full model to simulated data with an
initial transient improvement in performance for (a)τo, (b) r, (c) c, (d) y0, and (e) τ∗.
Simulated data came from the full model with τo = 4, r = 0.02, y0 = .256, c = 0.5,
and τ∗ = .713.
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3.3 Model Comparison

We now want to compare the nested models to test for a transient sleep inertia

effect. Recall that we have already fit simulated data with no sleep inertia effect to

the simple model, and simulated data with a sleep inertia effect to the full model.

There we illustrate how to fit both models to a given data set, and then use the

likelihood ratio test and AIC and BIC values to asses whether or not there is a

significant initial transient improvement in performances.

3.3.1 Simulated Data with no Sleep Inertia Effect

Recall, we are using the simulated data that was created under the simple model, so

it has no sleep inertia effect. Here we fit the full model to that data. Figure 3.5 shows

scatter plots of pairwise MLEs fit to the full model. By fitting the the full model

to the simple data, we are able to check for identifiability issues within the model.

Here we can see a trend line between τo and r which shows trade-offs between these

two parameters. There are also trade-offs between τo and τ∗. There is a straight line

when plotting these two parameters against each other.
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Figure 3.5: Pairwise scatter plots for the best parameter estimates, for simulated
data generated from the simple model (no sleep inertia effect) and fit with the full
model. The purple x’s are a negative log likelihood value within 5% of the best fit
parameter set out of 1000 runs starting at different initial parameter values. The
black dots are the top 10 best fit estimates. Note the apparent patterns between τo,
r, and τ∗ highlighting identifiability issues.

Figure 3.6 shows the likelihood profiling results for all five parameters of the full

model fit to the simple data. The likelihood profiling for τo shows the fixed parameter

values leveling out by 200. This shows that multiple values of τo correspond to the

same negative log likelihood value, which highlights identifiability issues. The same

can be shown for r. There are multiple values for r that correspond to the same

negative log likelihood value. The other three parameters show unique best fit values,
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so they are identifiable.
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Figure 3.6: Likelihood profiling fitting the full model to simulated data with no
initial transient improvement in performance for (a)τo, (b) r, (c) c, (d) y0, and (e) τ∗.
Simulated data came from the simple model with y0 = .256, c = 0.5, and τ∗ = .713.

We used the likelihood ratio test to see whether there was a significant difference

in model fits. Results from the likelihood ratio test were the as follows: the likelihood

ratio was 6.7302, the χ2 critical value was 5.9915, degrees of freedom was 2, and the

p-value was 0.03456. Table 3.1 shows the AIC and BIC results. AIC and BIC values

with a difference of more than 3 or 4 are often interpreted as significantly different

model fits.
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Table 3.1: Data with no sleep inertia effect

Model nLL(θ̂;x) n AIC BIC ∆ AIC ∆

Simple 50.31289 88 106.6258 114.0578 2.7302 0

Full 46.94778 88 103.8956 116.2822 0 2.22642

Based on the likelihood ratio test and the AIC and BIC, the decision would be

that the simple model fits the data without sleep inertia better.

3.3.2 Simulated Data with a Sleep Inertia Effect

Here, we will be using the simulated data that was created by the full model. Figure

3.7 shows the pairwise scatter plots of the simple model fit to the simulated data with

a sleep inertia effect. This figure does not show identifiability issues since the top 10

best fit parameters cluster tightly. Figure 3.8 shows the likelihood profiling of the

simple model fit to the sleep inertia data. The likelihood profiling shows a minimum

point which suggest that there are no identifiability issues with these parameters.
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Figure 3.7: Simple model fit to the simulated data without a sleep inertia effect. As
before, the purple x’s are a negative log likelihood value within 5% of the best fit
parameter set out of 1000 runs starting at different initial parameter values. The
black dots are the top 10 best fit estimates, which cluster tightly and indicate no
identifiability issues.
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Figure 3.8: Likelihood profiling fitting the simple model to simulated data with a
sleep inertia effect for (a) y0, (b) c, and (c) τ∗. Likelihood profiling plots for each
parameter have a minimum point which indicates a unique parameter estimate.

Results from the likelihood ratio test were as follows: the likelihood ratio was

33.9447, the χ2 critical value was 5.9915, degrees of freedom was 2, and the p-value

was 4.256e-08. In this case it doesn’t make a difference if α = 0.05 or α = 0.01, in

either case the decision would be to reject the null hypothesis and conclude that the
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full model fits the data better. Table 3.2 shows the AIC and BIC results.

Table 3.2: Data with sleep inertia effect

Model nLL(θ̂;x) n AIC BIC ∆ AIC ∆ BIC

Simple 74.54499 88 155.09 162.522 29.9448 24.9901

Full 57.57262 88 125.1452 137.5319 0 0

Both the AIC and BIC are lower for the full model confirming that the full model

fits the data with sleep inertia better.

3.3.3 Real Data with a Sleep Inertia Effect

We used 12 year child (ID 4031) as an example from the real data set. There looks to

be a weak trend of sleep inertia and so we would like to do a model comparison with

this data. Figure 3.9 shows pairwise scatter plots of the parameters of the simple

model fit to this data. These plots show tight clustering of the best fit parameter

estimates, indicating that they are identifiable (or unique).
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Figure 3.9: Pairwise scatter plots for the best parameter estimates, for the simple
model fit to real data (12 year child ID 4031). The red x’s are a negative log likelihood
value within 5% of the best fit parameters set out of 1000 runs starting at different
initial parameter values. The black dots are the top 10 best fit estimates.

Figure 3.10 shows likelihood profiling of the simple model fit to this data. No

signs of identifiability issues are present in any of the likelihood profiling for the

parameters; each plot has a minimum value which corresponds to a unique best

estimate.
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Figure 3.10: Likelihood profiling fitting the simple model to real data (child ID 4031)
for (a) y0, (b) c, and (c) τ∗. Each likelihood profiling plot appears to have a unique
best estimate.

Figure 3.11 shows the pairwise scatter plots of the MLEs for each parameter of the

full model to this data. Here we can see identifiability issues between the parameters.



49

tau0

0.
0

1.
0

2.
0

●●●●●●●●●●

●●●●●●●●●●

0.
07

0
0.

08
0

●●●●●●●●●●

0.0 0.4 0.8

●●●●●●●●●●

0.0 1.0 2.0

●●●●●●●●●●

r

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

y0

●●●●●●●●●●

0.155 0.170

●●●●●●●●●●

0.070 0.080

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

c

●●●●●●●●●●

0.
0

0.
4

0.
8

●●●●●●●●●●

●●●●●●●●●●

0.
15

5
0.

17
0

●●●●●●●●●●

●●●●●●●●●●

0.00 0.10 0.20

0.
00

0.
10

0.
20

taustar

Pairwise Scatterplots of Estimates: Full Model

Figure 3.11: Pairwise scatter plots for the best parameter estimates, for the full
model fit to real data (12 year child ID 4031). The purple x’s are a negative log
likelihood value within 5% of the best fit parameters set out of 1000 runs starting at
different initial parameter values. The black dots are the top 10 best fit estimates.

Figure 3.12 shows likelihood profiling for each parameter of the full model fit to

this data. Plots for τo and r contain near-horizontal lines which shows that every

parameter of τo and r correspond to the same negative log likelihood value. We also

see identifiability issues with τ∗ getting better fits the closer it gets to 0. This is likely

due to the trade-off between τo and τ∗.
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Figure 3.12: Likelihood profiling fitting the full model to real data (child ID 4031)
for (a) τo, (b) r, (c) c, (d) y0, and (e) τ∗.

Results from the likelihood ratio test were as follows: the likelihood ratio was

5.3692, the χ2 critical value was 5.991, degrees of freedom was 2, and the p-value

was 0.06825. These results show that the full model fits the data reasonably well,

and fits better than the simple model at any significance level α > 0.06825. Table

3.3 shows the AIC and BIC results.
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Table 3.3: Model Comparison for Real Data (child ID 4031)

Model nLL(θ̂;x) n AIC BIC ∆ AIC ∆ BIC

Simple -63.75605 95 -121.5121 -113.8505 1.3692 0

Full -66.44065 95 -122.8813 -110.1119 0 3.738554

The AIC value is lower for the full model whereas BIC is lower for the simple

model, and ∆ AIC and ∆ BIC are both less than 4, which suggests that both the full

model and the simple model are fitting the data well but not significantly differently.

The mixed results for AIC and BIC are expected given that the p-value for likelihood

ratio test was close to 0.05 but not less than it.
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Chapter 4

Discussion

4.1 Conclusion

Our goal was to come up with a flexible model that better captured PVT data

including the effects of sleep inertia. PVT data are skewed and non-stationary, so

using just the mean to model the data is not the best method. The data has high

variability, causing the mean to be inflated. This can be seen when we compare

the mean and the median. Using just the mean misses the whole effect that sleep

inertia has in the data. This shows the need for a more flexible model specific to

this biological process. In addition kids have the special issue of getting distracted

and/or fatigued towards the end of the 10 minute PVT.

We came up with a general model that can be used to model sleep inertia and that

could also be transformed into a simple model to be used on PVT data with no sleep

inertia present. We used techniques such as finding the likelihood function to find

best fit parameters, pairwise scatter plots of MLES of the parameters and likelihood

profiling to test for identifiability issues in our data, and since we had nested models

we were able to use the likelihood ratio test to make decisions on which model fits

our data best. The full model showed identifiability issues in some cases. Analyzing
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real data showed that the full model can be a better fit than the simple model, but

also outlined a need for future work.

Our results showcase that data with a strong sleep inertia effect fit the full model

better while data with no clear sleep inertia effect better fit with the simple model.

4.2 Future Work

The models in this thesis do not include the fatigue that is present in some of the

data. The real data showed that the identifiability issues were complicated which

signifies the need for future work in adding in the fatigue. Possible ways to model the

distraction and/or fatigue would be looking at time varying variance, mixture gamma

distributions, etc. We also didn’t look at any bias in the estimates. Future work

would eventually include applying these methods to the full data set and repeating

age and gender level analysis.
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Chapter 5

Appendix

5.1 Gamma Distribution

The Gamma Distribution is a continuous probability distribution consisting of two

parameters, the shape parameter and the scale parameter. Special cases for the

Gamma distribution are the Exponential distribution, the Erlang distribution, and

the Chi-squared distiribution. A random variable, X that is Gamma distributed with

shape α and rate β is denoted:

X ∼ Γ(α, β)

The PDF for the Gamma Distribution is the following:

f(x) =
βα

Γ(α)
xα−1e−βx, for x,α, β > 0

Where Γ(α) is the gamma function.
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