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Abstract

This report is concerned with the analysis of data from “high-throughput”
screening of possible drug compounds. High-throughput screening is a rel-
atively new process yielding thousands of data points at a time, more than
can be handled by traditional methods of biological data analysis. We ex-
amine a few methods for extracting knowledge from this data and also
illustrate the use of descriptors for predicting drug activity. Finally, we
present suggestions for improvements in the process and ideas for future
work.

1 Introduction

The lengthy process of bringing pharmaceutical products from concept
to market begins with drug discovery. A significant part of modern drug
discovery is the testing of thousands of compounds in a chemical library
for drug-like activity. One of the primary tools of this testing is high-
throughput screening, a highly automated system to assess the biological
activity of thousands of compounds at a time.

The main purpose of HTS is to find chemical families that have the de-
sired activity and to show a structure-activity relationship. A secondary
purpose of HTS is to elucidate biological insights given multiple types
of biological results, initiating further wet lab experimentation. Because
high-throughput screening is a manufacturing process with highly vari-
able output and active compounds comprise only a small fraction of the
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compounds tested, one challenge in pharmaceutical research is extracting
knowledge from the large amounts of data generated.

In this report, we illustrate part of the process of converting data to
information. We

1. describe the data set we were given

2. investigate two methods of analyzing the high-throughput data, com-
paring their results to a low-throughput reference

3. study possible descriptors for predicting drug activity

4. discuss possible extensions of approaches and additional approaches
that could be the focus of future work.

2 Experimental methods

Biological screening can generally be categorized as “low-throughput” or
“high-throughput”. Low-throughput screening (LTS) is a bench-scale as-
say of compounds by chemists or biologists in a controlled laboratory en-
vironment, often involving several experiments with the same compound
at different concentrations or under other carefully varied conditions. Be-
cause of the small number of compounds involved (less than 100), low-
throughput assays are typically interpreted manually by scientists.

Figure 1: A high-throughput screening robot. Photo from [4].

By contrast, high-throughput screening (HTS) is an automated pro-
cedure for quickly testing many compounds at once. In the type of HTS
considered here, chemists prepare “plates” consisting of many small wells,
each with a compound to be tested. These are placed in the input queue
of a robot which performs the actual experiements, adding cells or other
reagents and recording the resultant activity signal (e.g., luminence). Due
to the large volume of data generated and the manufacturing-type condi-
tions, computer processing is usually required to understand HTS data.
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In summary, HTS is used to screen compound libraries for biological
activities while LTS is necessary for developing appropriate experimental
protocols and providing the expert-interpreted results to which HTS is
compared.

3 Data

Our first task was to analyze results from one assay (#1) conducted in
both LTS and HTS to find chemical compounds that induce “B cell” pro-
liferation. In this activation assay, active compounds cause high signals
whereas inactive compounds generate low signals. The data in Assay #1
includes several controls: a natural positive reference known to induce B
cell growth, a natural negative reference known to inhibit B cell growth,
positive and negative references with structural similarity to tested com-
pounds, and a (negative) solvent control, DMSO, with no added com-
pound.

Also, we had four other assays which, combined with the first, targeted
biological and structure-activity relationships. Unlike Assay #1 in which
we were given essentially raw data, this group of assays was given to us
in an analyzed form so that we could explore various biological predictors
for active compounds.

3.1 Assay #1: low-thoughput screen

The low-throughput activity screen consists of 31 experiments testing a
total of 64 compounds to give 1272 rows of data. The data set includes
four controls: natural positive reference, positive reference, negative ref-
erence and the solvent DMSO control. In each experiment, one or more
compounds are tested at concentrations between 0.1 µM and 30 µM. This
gives us a dose-response curve for each compound in each experiment.
The data set also includes expert testimony on the results as to which
compounds are active or inactive.

Low-throughput is a more detailed data set for each individual com-
pound than high-throughput since each compound is tested for activity
at several concentrations. However fewer molecules are tested—64 in LTS
versus 1614 in HTS (with an overlap of only ∼ 40 compounds)—so scien-
tists are typically able to assess the assay results manually due to the small
number of compounds tested per experiment. Because of these factors,
LTS data is perceieved as more reliable in terms of determining active
molecules than HTS data. Therefore, once we have a ranking of active
compounds for LTS, we make it the standard by which to validate HTS
rankings.

3.2 Assay #1: high-throughput screen

The high-throughput screen uses standard industry plate formats, either
96 wells/plate or 384 wells/plate for a total of 33 plates. This gives about
6000 wells in which 1614 compounds are tested. The screen includes all
controls listed at the beginning of this section. A typical plate is organized
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Figure 2: Raw HTS data.

so that controls appear in the first two columns in 4-replicates and test
compounds cover the rest of the plate. Some plates also have controls
scattered throughout, but not in any regular manner. As can be seen in
Figures 2-3, there are many systematic biases and a large amount of noise
in the raw data.

3.3 Assays #2-5

Once a screen has been analyzed, an important next step in the drug de-
velopment process is to provide information to chemists and biologists in
the form of structure-activity relationships or new hypotheses about biol-
ogy. We examined four assays and discerned relationships between Assay
#1 and other assays (#2,#3,#5). The compounds were organized into
10 different chemical structure groups. Whereas Assay #1 measures B
cell proliferation, Assays #2 and #3 measure protein concentration, and
Assays #4 and #5 measure compound-receptor activation. Assays #2
and #3 are reported in terms of “potency”, the minimum protein concen-
tration necessary for a signal to be detected above background noise, and
“efficacy”, the maximum protein concentration seen in a dose-response
curve. A brief explanation of each screen is given as follows:

Assay #2 - Peripheral blood mononuclear cell screen (PBMCs)
PBMCs in tissue culture media are placed in plate wells pre-dispensed
with compound, and 24 hours later the media is inspected for the
concentration of two proteins (Protein “1” and Protein “2”). Pro-
tein 2 is known to activate a particular signaling pathway through
Receptor “2” and is thus thought to be indicative of B cell prolif-
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Figure 3: Raw HTS data by plates. Red indicates higher recorded signal.
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eration. Although Protein 1 is seen in the assay, it is unclear what
relationship exists between Protein 1 and B cell proliferation, al-
though scientists suspect one exists. We assume Protein 2 is the
most relevant one. The outcomes of this screen are potency and
efficacy scores.

Assay #3 - D screen “D cells” in tissue culture media are placed in
plate wells pre-dispensed with compound, and 24 hours later the
media is inspected for the concentration of two proteins (Protein 2
and Protein 3). Again, Protein 2 is thought to be indicative of B
cell proliferation because it activates Receptor 2’s signaling pathway.
Protein 3 is not expected to have a direct relationship to B cell
proliferation.

Assay #4 - Activation of Receptor 1 Compounds were investigated
for their ability to activate Receptor 1. The results are classified as
agonist if a compound activates a receptor and indeterminate or not
seen, if not. We didn’t consider this assay in our analysis due to
time constraints.

Assay #5 - Activation of Receptor 2 Compounds were evaluated for
their ability to activate Receptor 2. The results are classified as in
Assay #4. Agonist for Receptor 2 is thought to be indicative of B
cell proliferation and upstream of Protein 2.

4 Analysis

Once a library of compounds has been run through HTS, it is required
to analyze the data to find the active compounds, or “hits”. Some of the
difficulties involved include high signal-to-noise ratios, inherent variabil-
ity of biological targets, minor malfunctions in the instrumentation, and
systematic biases due to environmental effects.

We describe the spectrum of approaches to extracting this knowledge—
heuristic data analysis, statistical modeling of the HTS data, process mod-
eling of the HTS, and phenomenological modeling of the biology. For this
project, we illustrate the first two approaches and simply discuss the oth-
ers, due to lack of time and information.

4.1 LTS Reference ranking

Because the low-throughput screening is a much more reliable and com-
prehensive data set for the compounds that it includes, it is used as a
standard for evaluating our HTS results. Here we describe the methods
used to analyze the LTS data. Although this analysis was a prerequisite
for the HTS analysis, it was quite different in purpose—the goal was to
produce a standard for HTS analysis.

First, in order to compare results across the 31 different experiments in
the LTS, it is necessary to normalize the data. We tried several different
methods,

1. normalizing signals on a scale of negative reference (=0) to positive
reference (=1),
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2. calculating the n-fold increase of signals over the solvent (DMSO)
control,

3. and calculating the n-fold increase of signals over the negative ref-
erence.

The third method is significantly more straightforward than the first, and
was expected to be more accurate than the n-fold increase over the DMSO
because the solvent control was only tested once per experiement. (More-
over, the negative reference is known not to be fully inactive so this pro-
vides a more stringent means to identify active compounds.) Indeed,
according to expert opinion, the results produced by the last method
matched their understanding almost exactly. This involved calculating
(signal)/(negative reference) at all concentrations tested and taking the
median value over all experiments.

Figure 4: A typical dose-response.

Next, we used the numbers thereby obtained to rank our compounds
in order of activity. For active compounds, we expect signal values to
increase with increasing concentration (e.g., Figure 4 for a typical dose-
response curve). This is usually the case, but we observe many signal
values decreasing at 30 µM. One reason for this effect is thought to be
cytotoxicity at high concentrations of some compounds. By taking the
median of our numbers, we prevent such data points at the end of the
curve from skewing our ranking.

We use expert testimony to reconcile ambiguities between potentially
active versus inactive compounds and choose a cutoff for hits. The ex-
pert advised us to remove experiment #4035 due to unreliable data, i.e.
the negative reference signal was higher than the positive reference sig-
nal at concentration 0.3 µM. See Figure 5. Based on this advice, we
excluded three more experiments: experiment #3787 also showed signal
values where negative reference > positive reference and two experiments
(#3433 and #3460) showed negative signal values.

The end result of the LTS analysis is a ranking of compounds and
“hit/non-hit” determinations which can be used as a baseline for evaluat-
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Figure 5: A flawed dose-response.

ing HTS analysis. (The match to expert opinion was best using an n-fold
increase cutoff value of 1.145, giving 33 active compounds.)

4.2 Heuristic data analysis

The simplest and most common methods for finding hits in HTS data are
by heuristics. These are commonly-used guidelines for quality control of
data, normalizing plates, and scoring compounds. It is both an advantage
and drawback of heuristics that they do not need to describe the errors
being corrected for—there is minimal accounting for sources of variability
in the signal. Some popular heuristics are the use of Z-scores (a statis-
tical parameter) to normalize the data by making each plate’s standard
deviation and median comparable, and the use of controls to verify the
reliability of the data on a plate. These are frequently used in industry
to evaluate HTS data, and we discuss below the results of our heuristic
analysis and its validation.

We applied a three-stage heuristic algorithm to our data:

1. Remove plates using fixed criteria derived from expert opinion.

2. Normalize signals using plate-by-plate Z-scores.

3. Rank each compound by the median of its signals and mark as hits
those with signals exceeding one standard deviation of the screen
median.

Plates were excluded from our data set if any of the mean, median
and trimmed mean of the negative references on the plate were greater
than the corresponding statistics for the postive references, or if any two
of these statistics for the solvent control (DMSO) were larger than those
for the data. These criteria were derived from expert opinion in removing
experiments from the LTS screen. A total of 10 plates were excluded from
our analysis by these criteria (leaving roughly 200 out of 1600 compounds
without any data).
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The Z-score was calculated by the following formula for each data
point:

zi =
xi − x̃

σx
,

where x̃ is the median and σx is the standard deviaton of the signal values
on a particular plate.

The last step consists of grouping the Z-scores compound by com-
pound, taking the median value and sorting these values. This yields a
ranking of the compounds, in order of predicted drug activity. We also
have an alternate “ranking” of hit/non-hit, which is determined by taking
as hits those compounds for which a signal exceeds the screen median
by at least one standard deviation. Using the binary hit/non-hit system,
we arrive at at 72.7% match with the LTS results. In other words, of
the compounds included in both screens, 72.7% of them were classified in
the same way. A more qualitative evaluation is shown in Figure 6, which
depicts the LTS ranking vs. HTS ranking of common compounds. If the
rankings were perfectly matched, this would be a monotonically increasing
curve (Figure 6a) or a diagonal line (Figure 6b).

4.3 Statistical modeling

A more systematic method for finding hits is statistical modeling — using
a portion of the data to derive statistical predictors that determine hits
in the rest of the data. This is a purely mathematical technique that does
not rely on specific information about the HTS mechanism or the biology
involved.

In particular, we used the compounds identified by LTS as training
data for the following algorithm, derived from [7]:

1. Calculate a variety of binary parameters for each data point (e.g.,
“Is the positive reference on its plate at least one standard deviation
above the data median?”).

2. Identify parameters that have predictive value by comparing the
set of hits and the set of non-hits. Create a “kernel” from these
parameters.

3. Calculate the Hamming distance between every data point and this
kernel.

4. Identify points as hits if they are at least as close to the kernel as
the mean distance of the training data.

The end result is a division of the HTS compounds into two sets,
hits and non-hits. Unfortunately, due to the relatively small size of the
LTS data set and the lack of an independently verifiable classification
(e.g., synthetic data), we are unable to definitively evaluate the results
here. However, due to the small number of parameters identified in the
kernel (8), it is believed that the training data is not over-fitted. In
particular, there is a 78.4% match with the heuristic results for HTS (out
of 1607 compounds), and a 78.8% match with the LTS results (out of 33
compounds). A qualitative ranking plot (where the statistical model’s
compound ranking is based on Hamming distance to the kernel) is shown
in Figures 7-8.
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Figure 6: Heuristic HTS ranking vs. LTS ranking. (a) Compounds in both rankings
are shown. Rank 0 is most active. (b) Same as (a), but HTS rankings are relative.
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Figure 7: Statistical model HTS ranking vs. LTS ranking.
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Figure 8: Statistical model HTS ranking vs. LTS ranking.

4.4 HTS modeling

Another approach is modeling of the HTS process itself, particularly the
factors contributing to variation in the signal. Some of these might be:
well position, actual compound concentration in a given well, cytotox-
icity of the compound, environmental factors such as temperature and
humidity, and plate run order. This would take the form of a functional
relationship

yi = f(xi, zi) + ε,

where yi is the observed signal for each compound i, xi is the actual
activity, zi are environmental variables and ε is noise in the system. A
good approximation for f would allow one to invert the relationship and
approximate the activity xi, given yi. While a model of this sort would
be ideal, we unfortunately did not have sufficient information about the
HTS process in this project to constuct such a model.

4.5 Biological modeling

At the most specific level, there is modeling of the actual biological pro-
cesses involved. At the cellular scale, this sometimes takes the form of
a reaction-diffusion-advection system of differential equations describing
the concentrations of chemicals or proteins and their effect on cell pro-
cesses. Another approach is modeling gene activity as a network of logical
elements. However, modeling cell biology is not feasible for HTS screen-
ing, due to the wide variety of compounds tested — the complexity of the
resulting system would have been prohibitive, and beyond our knowledge
of biology. Inversely, HTS is not appropriate for biological modeling be-
cause the information generated is not sufficient. Had we been studying
the behavior of a specific drug-target system, this would be an appropriate
approach.
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5 Recommendations for the HTS process

When analyzing the HTS assay we encountered insufficient and/or biased
information. For example, some signal values of the compounds are unex-
pectedly high compared to other signal values within a plate. As another
example, the negative reference signal is greater than the positive refer-
ence signal on a few plates. We suggest the following improvements to
the high throughput screening (HTS) process:

Increase the number of samples per compound The major obsta-
cle we found when trying to create a model for the HTS was the
small number of samples per compound. For a significant statistical
analysis of each compound we suggest running a larger number of
experiments with each compound. In our data we have only 2 or
3 samples per compound, which makes model construction imprac-
tical. If we had more samples per compound, we could model the
noisy signals as a normal distribution.

Robotic error analysis Behavior and possible error of the instrumen-
tation should be characterized. Despite the precision of HTS, we
should be aware of possible inconsistencies and/or measurent errors.

Improve plate consistency The use of two different sized plates is an
unnecessary inconsistency. A variation in the plate size introduces
one more variable to the problem without any apparent gain. In
future experiments we suggest a uniform size of the plates in the
HTS so that the data could be better analyzed.

Environmental effects on data We assume that signal of the com-
pounds is affected by environmental parameters such as tempera-
ture, humidity, pressure and light. These are possible causes of the
abnormal signal values we obtained, but we did not have this in-
formation for our analysis. This would have been useful in making
our results more accurate, and in constructing more realistic and
descriptive models.

6 Biological and structure-activity rela-
tionships

Once hits from an HTS campaign have been identified, the results can
be used to find relationships between a set of chemical or biological de-
scriptors and drug activity. We show the application of statistical models
and heuristics to other sets of experimental data in order to uncover these
relationships. Such results can be used by chemists to pursue more po-
tentially active compounds, or by biologists to formulate new hypotheses
and drive wet lab experimentation.

6.1 Heuristics

We carried out a preliminary analysis using heuristic algorithms. These
results were then compared with the HTS screen for activity. In the anal-
ysis of Assay #2 (PBMCs), it is thought that higher values of potency and
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efficacy are required for a compound to be active. We used the product
of potency and efficacy to identify potentially active compounds, taking
the mean of these products as a reference. A similar analysis was carried
out on Assay #3 (D cells).

A different kind of analysis was performed on Assays #4 and #5. We
investigated which compounds activate Receptor 1 and Receptor 2. Assay
#4 was omitted from the analysis in the interest of time. Furthermore,
we only considered agonist compounds from Assay #5.

Using our given information on chemical structure groups, we tabu-
lated the groups to which the hits belonged. It was found that most hits
came from group 2. Hence group 2 was pulled out from the data, and the
same analysis was carried out to identify the hits from the other groups.

Finally, we compare hits derived from the above analysis with the
hits found by the heuristic HTS analysis and obtained a 61.0% match.
Comparison with the results of the statistical model and yielded a 74.5%
match.

6.2 Logistic regression analysis

Given a series of n measurements on the compounds, “discriminants”,
one can ask which of them (if any) are good predictors of activity for
the compounds, in the sense that large (small) values of the measurement
tend to imply large (small) activity. The method of logistic regression is
a useful tool for this purpose, and is described below.

Given a series of vectors x1, . . . xm ∈ Rn, and associated real values
y1, . . . ym, it is a common problem to find a function that fits the dataset
as best as possible in a given context, i.e. f : Rm → R such that f(xi) ≈ yi

for every i. The logistic regression approach allows for functions of the
form

f(x) =
ez

1 + ez
, z = β0 + β1x1 + . . . + βnxn,

where the choice of values βi is determined with maximum likelihood
methods. Note that the values of f are always in the interval [0, 1] so we
interpret this function as the probability for a discrete event to hold for
the point x.

In our context, each vector xi represents a screened compound, or more
precisely, an n-tuple of measurements performed on a compound. We hope
that the measurements contain enough information about the compound
for the application at hand, so that one can think of the compound as a
point in Euclidean space.

The directions in which the values of the functions f(x) and z(x) =
β0+β1x1+. . .+βnxn increase are the same, and are described by the vector
β = (β1, . . . , βn). If βi = 0 for some i, we infer that the ith measurement
does not provide any predictive information about the value of f . On the
contrary, if βi is very large, we conclude that the ith measurement might
have a predictive value (given that large values of xi imply large values
of f(x)). In order to compare different values of βi, i ≥ 1, it is useful
to normalize the measurements so that the sets {x1

i . . . xm
i } have similar

variance for every i.
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We examined four descriptors: potency and efficacy for Proteins 1 and
2 (Assay #2). The choice of discriminants is biologically oriented so we
might uncover more informative relationships than with typical chemical
measurements, since it is suspected that these proteins are involved in
B cell proliferation. We used only those compounds that were included
in the LTS, and followed the ranking we had obtained to decide whether
each compound should be considered active (y = 1) or inactive (y = 0).
The Newton-Raphson method was used for finding the linear regression
function f(x), which can be interpreted as the probability for a compound
to be active given the measurement vector x.

Results: Given the descriptors Potency1, Efficacy1, Potency2, Efficacy2,
relating to Proteins 1 and 2 respectively, and using a total of 50 data points
(37 active, 14 inactive), we obtained a logistic regression function with the
parameters β0 = 1.4, β1 = 1.18, β2 = −0.27, β3 = −0.24, β4 = 2.12.
This indicates that Efficacy2 is the best predictor of activity (out of the
four) for a given compound. Surprisingly, the potency of the same pro-
tein does not seem to carry a predictive value. However, the potency of
Protein 1 may be used as a (weak) predictor.

6.2.1 Testing hypotheses

In this section we make two short, tentative analyses of the relationships
between Protein 1 and 2 secretion, activation of Receptors 1 and 2, and
B-cell proliferation. It has been proposed that activation of Receptor 2
induces secretion of Protein 2, which in turn is associated with B cell
proliferation. In what follows, we will restrict our attention to these two
relationships.

Receptor 2 → Protein 2 Consider the 101 compounds that were
tested both for receptor activation and protein potency/efficacy. We sep-
arated them into two groups, according to whether they were found to
activate Receptor 2 or not. The protein secretion activity for the two
groups can be described as follows:

Protein 1 Efficacy Protein 2 Efficacy
Receptor 2 activation µ = 3.13, MAD = 0.212 µ = 3.68, MAD = 0.36

Receptor 2 non-activation µ = 3.16, MAD = 0.24 µ = 3.13, MAD = 0.44.

We can see that the Protein 2 efficacy average is markedly higher for
the group of Receptor 2-activating compounds than for the group of non-
activating (or weakly activating) compounds. Indeed, the averages of 3.68
and 3.13 are significantly different, taking into account the MAD of each
data set (recall that MAD, or median absolute difference, is a measure of
the variance of the values, [2]). On the other hand, the Protein 1 efficacy
average is quite similar for both groups (with respect to the corresponding
MAD values) — a similar result holds for Protein 1 potency analysis.
Thus, we have evidence of a correlation between Receptor 2 activation
and Protein 2 secretion. In and of itself this doesn’t imply a cause and
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effect relation, but it does support a scenario in which activating Receptor
2 triggers a signaling cascade resulting in protein production.

Note that in a similar way all binary relations between the given dis-
criminants can be either established or refuted (to the extent that the data
is sufficient and valid), and that both positive and negative influences can
be distinguished.

Protein 2→ Cell Proliferation We considered the compounds that
were screened for Protein 2 efficacy, and plotted them in Figure 9 using
the corrected signal on the y-axis. The compounds that were deemed
active using the techniques from the previous section are plotted in red.
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Figure 9: ?

It is not surprising that the red dots tend to have higher signal values,
since their corresponding compounds were chosen on that basis. But it
can also be seen that the red points tend to be clustered on the right side
of the figure, suggesting a correlation between Protein 2 efficacy and B
cell proliferation. Also, there doesn’t seem to be another cluster of active
points on the upper left corner which suggests that the only mechanism
that the compounds have for inducing proliferation involves the secretion
of Protein 2. This observation can be very useful when trying to establish
a model for this process, but could not have been deduced only from
a correlation analysis, since a small red cluster in the upper left side
might not substantially diminish it. Finally, recall that active compounds
were chosen solely on the basis of their signal, without involving any
information on protein secretion.
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7 Conclusions and future work

In the first half of this project we investigated in detail Assay #1, both
HTS and LTS. LTS data was evaluated and compared to expert testimony
to create a reference set of results. Next, different methods and models
were developed for HTS and compared to LTS to determine the best
method/model to identify HTS active compounds. The second half was
devoted to the analysis of relationships between Assay #1 and other assays
thought to be predictive of Assay #1.

If we had more samples per compound, we could use for example
the approach described in [8]. In particular, let µ be the mean of the
signal values, σ its standard deviation, n the number of samples and
hac the threshold for compound activation (one possible choice is hac =
µ + 3σ). Then the probabilty of a compound being declared a hit could
be calculated:

P (hit) = P (x > hac) = 1− Φ(
√

n
hac − µ

σ
),

where Φ is the cumulative distribution function.
Another possibility of future work would be further investigation of

common structural features of compounds. This is important because if
only one compound of a family is considered to be a hit, it is a singlet
and unlikely to be pursued because very little chemical optimization can
be performed (toxicology for example).

If information about the HTS process were available, we would suggest
modeling the HTS to decode the effect of environmental factors and other
systematic noise. Also this would make it feasible to generate synthetic
data to more easily validate algorithms for HTS data analysis.

In this project we focused on heuristics and abstract statistical models—
that is, methods based on data mining. Those models were suited to the
problem posed and data available. We believe that an better understand-
ing of the environmental and biological variables in HTS would allow us
to construct a descriptive model, which would provide more insight into
the HTS process.
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