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1 Introduction 

In the parlance of linguistics, and as defined for this paper, 

a corpus (plural, corpora) is any ordered collection of 

words where repeated elements are allowed. This may 

simply be a list of random words, a cohesive body of work, 

or a compilation of many books and other media forms. 

The meaning of “repeated elements are allowed” is that 

the quotations (a) “the dogs are good dogs” and (b) “the 

dogs are good” may be considered as two different 

corpora, with (a) having five words and (b) having four 

words, even though both corpora draw from the same set 

of four tokens: “the”, “dogs”, “are”, and “good”.  

 

This relates to two additional important definitions for 

this paper, which are the count (or number of occurrences 

of a word) and frequency (or proportion) of a word in a 

given corpus. In the previous example, the word “dogs” 

has a count of 2 and frequency of 2/5 in quotation (a) and 

a count of 1 and frequency of 1/4 in (b).  

 

Finally, the frequency rank of a word is given by the index 

of a list which orders the words appearing in a corpus by 

frequency, from most frequent to least frequent. For 

example, in quotation (a) “dogs” has frequency rank 1 due 

to appearing more frequently than any other word, 

whereas the tokens “the”, “are”, and “good” each tie for 

frequency rank 2. 

 

1.1 Zipf’s Law 

Given a corpus of grammatical natural language text (not 

necessarily English), the frequency of a word is 

approximately inversely proportional to its frequency 

rank in the frequency table. This empirical observation of 

natural languages is referred to as Zipf’s Law (Zipf, 1936, 

1949). Though he was not the first person to notice that 

particular behavior of natural languages, the law is named 

after George Kingsley Zipf, a linguist who investigated 

the law and promoted its use in multiple disciplines. 

Formally stated, Zipf’s Law is described by the following 

relation: 

 

𝑓(𝑟) ∝
1

𝑟𝛼
(1) 

 

Here, r is the frequency rank of a given word within a text, 

f(r) is the frequency, and α>0 is a parameter which is 

determined empirically. In practice, many corpora yield 

α≈1. When measuring the frequency of words in a corpus, 

the most frequent word has rank 1 (r = 1), the second most 

frequent word (with r = 2) will tend to be about half as 

frequent as the most frequent word, the third most 

frequent word (with r = 3) will be a third as frequent as 

the most frequent word, and so on.   

 

Abstract: The statistical behavior of languages is of great interest to linguists and has been since the mid-20th century. The 

frequency distribution of words is often modeled with a discrete probability distribution called Zipf’s Law (Zipf, 1936, 1949). 

Research involving this modeling approach has undergone increasingly intense scrutiny over the last decade. It turns out that there 

is an interesting gap in the research of Zipf’s Law, as pointed out by Steven Piantadosi (2014) – namely, language is not static and 

changes from context to context, and there is comparatively little examination of these fluctuations using Zipf’s Law. This paper is 

a first step toward examining how language changes between different time periods and different types of written and spoken media 

via comparing the parameters of best fit for the data using Zipf’s Law. 
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Zipf’s Law is a special case of a power law distribution. 

In particular, it is a discrete distribution with probability 

mass function given by  

 

𝑓(𝑟) = 𝐶𝑟−𝛼, 𝑟 = 1, 2, … (2) 

 

where r is a positive integer,  > 1, and C > 0 is a 

normalization constant. Zipf’s Law is also known as a 

discrete Pareto distribution, or a zeta distribution 

(Newman, 2005). This distribution is typically shown 

graphically on a log-log plot as a straight line with slope 

equal to -. Note that  > 1 is required for the mean to be 

finite. If we restrict the sample space from the set of 

positive integers to a bounded set of integers {xmin, xmin+1, 

…, xmax}, then we allow for  > 0. 

 

The significance of Zipf’s Law is that it identifies a 

persistent pattern that appears to be universally present in 

all natural languages (Baroni, 2009). Understanding the 

structure of natural language is of material consequence 

because, for instance, natural language translation 

software requires algorithms which take a string of words 

in one language and return some other, different string of 

words in another language. These algorithms encode 

instructions which presuppose that a pattern in one 

language is equivalent to a pattern in another language. 

Translation software is used daily by millions of people 

in order to facilitate commerce, cultural exchanges, and 

travel. Therefore, any advancement in the understanding 

of patterns which appear in all languages is beneficial for 

improving communication around the world.  

 

Modern investigations of Zipf’s Law have focused on two 

broad research areas: 1. Using Zipf’s Law to compare 

different languages (Gelbukh and Sidorov, 2001), and 2. 

Using Zipf’s Law on small corpora (such as The Hound 

of the Baskervilles and Alice in Wonderland (Baayen, 

2001)) which also includes restricted categories of words 

(such as “nouns” and “verbs”) within the same language 

(Marcus et al. 1993).   These areas naturally have some 

overlap in the research. For example, a list of very 

common words (such as “water”, “father”, “mother”) that 

is translated into a sample of world languages (such as 

English, French, German, Swedish, etc.) is called a 

Swadesh List (Calude and Pagel, 2011). Such a list counts 

as several comparable corpora taken from world 

languages, but also counts as a category of words that is 

relatively restricted to content that is universally present 

in every human society. The key observation is that these 

avenues of research – different languages and small 

corpora – neatly miss the very ‘non-staticness’ of 

language that Piantadosi (2014) points out, by not 

examining or taking into consideration change in 

language over an extended time period or change in 

language between contexts. For example, the goal of a 

newspaper is to inform a general audience, while the goal 

of an academic paper is to inform a much more highly 

educated general audience or specified experts. These 

different contexts may result in changes in the word 

frequencies. 

 

These hidden variables could distort the results of other 

experiments. Is the time period of a corpus a confounding 

variable that a researcher comparing two or more corpora 

needs to control for? This gap in the research needs to be 

addressed. 

 

1.2 Research Question 

Given the aforementioned context surrounding research 

on Zipf’s Law, the main question we investigate in this 

paper is: Are there substantial differences between large 

corpora from the same language but from different 

contexts? Specifically, what would result in applying 

Zipf’s Law to large corpora organized by time period (for 

example, a corpus of text taken from the 19th century 

compared with a corpus of text taken from 1900 – 1950) 

and by media form (for example, a corpus of text taken 

solely from newspapers compared with a corpus of text 

taken solely from works of fiction)? 

 

2 Background 

 

2.1 Using Zipf’s Law to Compare Different Languages 

Zipf’s Law has often been used to study differences 

among world languages. The questions answered by such 

studies ask how Zipf’s Law changes depending on what 

language is used. If the grammatical structure of the 

language is radically different, does that significantly 

change the expected results from fitting a power curve 

like Zipf’s Law? 

 

Gelbukh and Sidorov showed that there exists a more than 

1% change in the power law exponent for Zipf’s Law 

(2001) – this refers to the  parameter in Equation (1).  

The best-fit coefficient was calculated using a linear 

regression method employing maximum likelihood 

estimates (Larsen and Marx, 2006) for a corpus of 

approximately 2.5 million words of English text versus a 

corpus of 2 million words of Russian text. Each word was 

taken from a wide range of genres including children’s 

books and science fiction. This breadth and depth of the 

corpora show that there is a measurable difference in the 

parameter when comparing two different languages and 
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that this difference is not incidental – that is, a 1% 

difference is very large when taking into account the 

number of words and different genres of the corpora with 

which Gelbukh and Sidorov were working. 

 

More recently, researchers have gone on to explore 

languages outside of the Indo-European family, such as 

Chinese, Japanese, and Korean (Lu et al. 2013), noting 

that thus far, the bulk of research into Zipf’s Law and its 

relationship with natural language have focused on Indo-

European languages, as opposed to other language 

families, such as the Sino-Tibetan family (Chinese) or the 

Altaic family (Korean). Lu Linyuan’s study found that 

characters taken from these languages exhibited behavior 

that significantly deviated from the expected power-law 

pattern following Zipf’s Law built from the study of 

words taken from European languages – notably, that 

Chinese, Korean, and Japanese characters did not follow 

Zipf’s Law. However, Lu’s study did not correctly 

implement Zipf’s Law; the debilitating flaw in that paper 

lies not in its mathematics, but in the assumption of 

semantic equality between a word taken from a European 

language and a Chinese character. Many characters in 

Chinese form compound words with other characters, 

behaving much more like morphemes than words. For 

example, 毕业生  (bì yè shēng, English: graduate) is 

composed of three characters, each having a meaning (in 

order: “complete”, “industry”, and “green”) which is 

unrelated to the whole word. In other words, Chinese 

characters and words cannot be considered comparable to 

each other. 

 

These studies show that there is no shortage of attention 

being given to the applications of Zipf’s Law to corpora 

taken from world languages. However, in this paper, we 

do not examine the tendency for language to change over 

time or for the language to change depending on the 

context. 

  

2.2 Using Zipf’s Law to Compare Small Corpora 

We discuss studies comparing texts written solely in the 

same language, specifically English. What is available to 

the researcher interested in comparing texts using Zipf’s 

Law when the texts are written in the same language? The 

set of rules describing the usage of the language suggests 

itself. 

 

Comparisons have been made between the Zipf’s Law 

parameter  in Equation (1) for categories of words 

within a language, such as parts of speech (Marcus et al. 

1993). In their paper, they compared grammatical 

categories such as determiners, nouns, and verbs in the 

third person present form (in English), and found that 

these forms followed Zipf’s Law closely, though there 

were interesting variations. For example, plotting rank 

versus frequency on a logarithmic scale shows that the 

curve tends to curve concave down. The presence of a 

pattern can aid in the task of highlighting abnormal text 

selections. For example, one deviation from the concave-

down behavior observed in Marcus et al. (1993) – in the 

case of using verbs to construct a Zipf’s Law curve of best 

fit—is that the curve is concave up instead of down, as 

noted by Piantadosi (2014). 

 

That language changes according to context misses the 

heart of the matter because the corpora described in the 

previous paragraph are very small or highly restricted, and 

not representative of an entire language. The coefficients 

of best fit for a single book may significantly differ from 

a corpus that draws from a large pool of text. 

 

The research reviewed in this paper is recent, but there is 

a simple explanation for why there are an abundance of 

experiments being done now when looking at the 

historical context. There are now huge, organized 

databases of texts and computers capable of quickly 

sorting through and producing tables of these data. Thus, 

there is a proliferation of research into the differences 

between world languages and larger corpora, which only 

recently became possible due to technological 

advancements (Moreno-Sanchez et al. 2016). Current 

research is concerned with the features of language in the 

present, with little concentration on the effect of language 

evolution over time. Piantadosi (2014) discusses social 

forces changing or adding new words (such as “email”), 

but nowhere does he mention a systematic study that 

examines word frequencies over a long period of time. To 

our knowledge, no studies have tested the way Zipf’s Law 

changes over time and between contexts, which led us to 

our main question. 

 

3 Methods 

To investigate our main question, we formulate the 

following hypotheses. The null hypothesis is that the 

parameters of the Zipf’s Law fit between the corpora 

organized by time period and those organized by media 

form will not be significantly different. Then the 

alternative hypothesis is that the parameters of the Zipf’s 

Law fit will have significant differences. The methods 

described below are used to determine whether or not we 

can reject the null hypothesis for the data we consider. 
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3.1 Data and Software 

We purchased data from Brigham Young University’s 

CORPORA, specifically the word frequency data for the 

top 100,000 words from the Corpus of Contemporary 

American English (COCA) (Davies 2008) and the Corpus 

of Historical American English (COHA) (Davies 2010). 

From the COCA website: “[The] COCA includes 440 

million words taken from 190,000 texts during 1990-2012, 

evenly divided (~88 million words each) into spoken, 

fiction, magazine, newspaper, academic.” From the 

COHA website: “The COHA data includes 385 million 

words of text in 116,000 different texts from the 1810s-

2000s, in fiction, popular magazines, newspapers, and 

non-fiction (books).” Note that this is truncated data with 

very large sample sizes which sets up the need for using a 

truncated version of Zipf’s law to analyze the data (see 

Methods). For this paper, we did not investigate how the 

data was collected or question the integrity of the data. 

Since it is one of the most extensive databases available 

to date, many graduate students and professors use the 

corpus, a list of which can be seen on the corpus website 

at (http://corpus.byu.edu/researchers.asp). 

 

These data are organized into eight sub-corpora which we 

have grouped into two main categories: time-period data 

and media-form data. The time-period data consist of 

words taken from texts from the 1800s, 1900-1949, and 

1950-1989, each category without regard for different  

 

media forms. The media-form data consist of words taken 

from newspapers, magazines, fiction literature, academia, 

and spoken (speech from television or radio), each 

category specifically taken from between 1990-2012. 

These data are analyzed using the R statistical language  

 

(R Core Team, 2016), with the eight sub-corpora 

represented in R as separate “data-frame” objects, each 

with two columns: the frequency ranks of given words 

(sorted from most frequent to least frequent for each sub-

corpora), and the frequencies of the corresponding words.  

 

For each sub-corpus, any word which had zero tokens 

(zero appearances in the corpus) was removed from the 

list. The rationale for not including zero-frequency words 

is simple: if a word doesn’t appear in the corpus, then 

creating a model which notes its absence is a strange thing 

to do. For example, “e-mail” is, of course, a word that 

doesn’t appear in the 1800s. When building a model for 

words taken from texts from the 1800s, why have a data 

point that says “e-mail” appeared zero times? To be fair, 

there would then be a need to have such a data point for 

every English word that is not present in the 1800s corpus. 

For this reason, we decided to discard any word which 

doesn’t appear. See Table 1 for a screenshot of the 

spreadsheet from which the data is drawn and used in the 

model (Davies 2008, 2010). 

 

 

Table 1: Data screenshot: Word frequency data for the top 100,000 words from the Corpus of Contemporary American 

English (COCA) (Davies 2008) and the Corpus of Historical American English (COHA) (Davies 2010). The leftmost 

column (ID) is the frequency rank of the word in the second column (word). The orange column (freq) is the total number 

of occurrences (or counts) of the word in the COCA. The yellow columns correspond to the time-period frequency data and 

the green columns correspond to the media-form frequency data (reported in per-million word frequencies). 

 

 
 

http://corpus.byu.edu/researchers.asp
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The leftmost column in Table 1 is the frequency rank of 

the word given in the second column. The orange 

highlighted column is the corresponding overall raw 

frequency (the number of occurrences) of the word in the 

COCA. The three yellow columns with the respective 

headings 1950-89, 1900-49, and 1800s are the per-million 

word frequencies for those time-period categories taken 

from the COHA. The five green columns that are headed 

respectively with coca_spok, coca_fic, coca_mag, 

coca_news, and coca_acad are the per-million word 

frequencies for those media-form categories taken from 

the COCA. 

 

Note that the word “the” is the most frequent word in all 

cases considered (r = 1). The number of occurrences of 

“the” in the 1800s corpus, for instance, is 65,266.92 per 

million words. The word “of” has an overall frequency 

rank of 3 which means that it is the third most frequent 

word overall, but it has rank 2 (instead of rank 3) in four 

out of the eight sub-corpora we considered. Since each 

sub-corpus is sorted from the most frequent word to the 

least frequent word before frequency ranks are assigned, 

only the rank and the frequency are used in the analysis, 

not the words themselves. In the case that two or more 

words have the same frequency, they are arbitrarily 

ranked.  

 

Lastly, note that these data sets are very large since the 

word frequencies are reported as counts per-million 

words. Thus, the sample size (n) in our model will be very 

large, and we discuss the modeling issues that result from 

very large n in the next section. 

 

3.2 Statistical Analysis 
Many real-world examples violate Zipf’s law because the 

upper and/or lower tails of the data do not follow a power 

law, i.e. those tails are not linear on a log-log plot of rank 

versus frequency (Newman 2005, Langlois et al. 2014, 

see Figure 1 below). Typically, the plots may be curvy at 

first for small rank but then straighten out into a linear 

region where the power law is a good fit, and curve 

downward in the tail. Our word frequency data show this 

pattern which led us to truncate the data to the linear 

intermediate region and then fit the model described 

below to that region. We follow the method for bounded 

discrete power laws outlined in Langlois et al. (2014). 

 

The model used to fit the data is a discrete bounded power 

law distribution (or discrete truncated Pareto distribution) 

with a given lower bound (xmin) and upper bound (xmax). 

The probability mass function is given by 

 

                              𝑓(𝑥) = 𝐶𝑥−𝛼, 𝑥 = 1,2, …                    (3) 
 

where  ∑ 𝐶𝑥−𝛼 = 1

𝑥max

𝑥=𝑥min

 

 

This is a truncated version of the original Zipf probability 

distribution (where C > 0 is a normalization constant), and 

a more accurate model to fit to word frequency data than 

other popular methods, such as the method described in 

Power-Law Distributions in Empirical Data (Clauset et al. 

2009). Clauset’s method (2009) does not allow for both 

an upper and lower bound which is clearly needed in our 

case. 

 

3.2.1 Parameter Estimation 
Here we outline the steps needed to estimate the power 

law exponent (slope parameter ) in Equation (3).  

 

• The best fit parameter is given by the maximum 

likelihood estimator (MLE) of  which is 

obtained by maximizing the log-likelihood 

function LL() defined in Equation (5) below 

(Bauke 2007, Langlois et al. 2014). In practice, it 

is more computationally effective to minimize the 

negative log-likelihood function which has an 

equivalent optimum: 

 
�̂� = argmin

𝛼
[−𝐿𝐿(𝛼)] (4) 

 

where    𝐿𝐿(𝛼) =

−𝛼 (∑ ln 𝑥𝑖

𝑛

𝑖=1

) − 𝑛 ln 𝜁(𝛼, 𝑥min, 𝑥max). (5)
 

 

The function 𝜁(𝛼, 𝑥min, 𝑥max) is given by 

 

𝜁(𝛼, 𝑥min, 𝑥max) = 𝜁(𝛼, 𝑥min) − 𝜁(𝛼, 𝑥max) (6) 

 

where 𝜁(𝛼, 𝑥), the generalized or Hurwitz zeta 

function, is given by  

𝜁(𝛼, 𝑥) = ∑
1

(𝑖 + 𝑥)𝛼
.

∞

𝑖=1

(7) 
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Note that when x = 1, ζ(α,1)=ζ(α) which is the 

Riemann zeta function. 

• Computational results in simulated discrete 

truncated power law data showed no bias in �̂�, the 

MLE for  for the parameter range ( between 1 

and 6) and sample sizes considered here. 

• It is important to point out that �̂� depends on the 

values for xmin and xmax. We have to choose these 

carefully, and this is not straightforward in our 

case. Even formal ways of doing this (see Bauke 

2007) involve a bit of subjective input when 

truncating the data. This issue will be discussed 

further in the next section where we describe our 

approach to uncertainty quantification in our 

estimates. 

3.2.2 Uncertainty Quantification 
The standard approach to uncertainty quantification for 

the  estimates would be to use an asymptotically normal 

approximation where the uncertainty comes from having 

a small sample size n (i.e. the uncertainty depends on n). 

Following Equation 3.6 from Clauset et al. (2009), the 

standard error of �̂�, , is derived from the width of the 

likelihood maximum, which is given by: 

𝜎 =
�̂� − 1

√𝑛
+ 𝑂(1/𝑛) (8) 

In our case, we have very large sample sizes (ranging 

from 868,761,000,000 (Newspaper corpus) to 

940,050,340,000 (1800s corpus)) so the standard error of 

the estimates is essentially zero. Instead, the main source 

of uncertainty in �̂� comes from how the data are truncated, 

i.e. uncertainty in xmin and xmax. 

Techniques for estimating the lower and upper bounds 

(xmin and xmax) from raw data are discussed in Bauke 

(2007), and we follow the approach described below:  

 Choose conservative (broad) intervals for 

candidate xmin and xmax bounds by visually 

inspecting the graphs of rank versus frequency 

for each of the eight corpora. The intervals we 

used are listed in Table 2, and they are shown as 

vertical lines on each plot in Figure 1. 

 The intervals are chosen so that the most linear 

intermediate region lies between the upper xmin 

range and the lower xmax range (i.e. the inner 2 

vertical lines). The lower xmin and upper xmax 

cutoffs (i.e. the outer 2 vertical lines) are chosen 

to exclude excessive curviness in the tails. See 

Figure 1 for details. 

 Bootstrap  estimates by sampling xmin and xmax 

uniformly from the intervals described above. In 

each iteration, use those values to truncate the 

data and then compute �̂� . We compile a 

distribution of  estimates from 5000 bootstrap 

iterations for each corpus, and those distributions 

are shown in Figure 2. 

 The bootstrapped distributions of �̂� are used to 

test the hypothesis that the parameter estimates 

do not differ significantly from one another, as 

shown in Figures 2 and 3. 

 

3.2.3 Accommodations for Count Data 
Methods such as the one by Clauset et al. (2009), assume 

that the data being used are a random sample. However, 

here, the data provided are not a random sample, but are 

count data.  

To clarify the difference between a random sample and 

count data, consider a random sample from a discrete 

power law distribution, which consists of a set of integers: 

many 1s and other small integers and few big integers. 

One can count the occurrence of each integer in the 

sample to get count data. We define this count of 1s to be 

c1, and so on. If we do this for all integers i in the sample 

from 1 to xmax, we get a set of count data {ci}. Note that 

we can reconstruct the sample from the count data. 

To use the estimation and uncertainty quantification 

methods described above, we must compute the log-

likelihood value from these counts ci instead of sample 

values xi as follows: 

𝐿𝐿(𝛼) = −𝛼 (∑ 𝑐𝑖(ln 𝑖)

𝑥max

𝑖=1

) − 𝑛 ln 𝜁(𝛼, 𝑥min, 𝑥max), (9) 

where  𝑛 = ∑ 𝑐𝑖 .

𝑥max

𝑖=1

(10) 

4 Results 

The results of the Zipf’s Law parameter () estimation 

and bootstrapped uncertainty analysis are given in Table 

2 and Figures 1, 2, and 3. Table 2 summarizes the 

bootstrap results following the method outlined above for 

estimating  in the eight different corpora considered. For 

each bootstrap iteration, the upper and lower cutoff values 

(xmin and xmax) were chosen by uniformly sampling from 

the corresponding intervals shown in the right two 

columns, and the estimation of  was done via MLE (see 
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Table 2: Summary of bootstrap results for estimating the exponent  in the eight different corpora. For each bootstrap iteration, the 

upper and lower cutoff values (xmin and xmax) were chosen by uniformly sampling from the corresponding intervals shown in the right 

two columns, and the estimation of  was done via MLE (see Methods for details). The left two columns show the median and mean 

point estimates for  from 5000 bootstrap iterations for each case.

 

 

 

 

 

 

 

 

Methods for details). The left two columns show the 

median and mean point estimates for  from 5000 

bootstrap iterations for each case. The median estimates 

range from 0.8594 (Academic corpus) to 1.155 (Spoken 

corpus), and the mean estimates are very similar. Note 

that the median α ̂ are also reported in Figures 1 and 2. 

 Figure 1 shows the Zipf’s Law fit for each of the eight 

corpora using the median  estimate from 5000 bootstrap 

iterations. In each plot, the dark gray circles represent 

individual data points and the red line is the model fit. The 

graphs are all plotted on a log-log scale with rank on the 

x-axis and word frequency on the y-axis. The vertical 

lines in each graph show the bounds for the xmin and xmax 

intervals used in the analysis of each corpus (see Table 2 

for exact values and see Methods for details on the 

analysis). The median �̂� value is reported at the top of 

each graph. We compute both the median �̂� and the mean 

�̂� (see Table 2), but we focus on the median because it is 

more robust to outliers (in the bootstrapped distributions) 

than the mean.  

The degree of similarity (or difference) between 

parameter estimates for different corpora can be inferred 

from the degree of overlap among bootstrap distributions 

of �̂� . A standard method for comparison would be to 

compute confidence intervals (CIs) and look for 

overlapping CIs across corpora, but looking for overlap in 

the bootstrap distributions plotted on the same graph does 

exactly this. 

We 

interpret 

the degree 

of overlap 

as follows: 

if two  

 

       

exactly this. We did interpret the degree of overlap as 

follows: if two distributions do not overlap at all, we infer 

that the  values are significantly different; if two 

distributions overlap, we visually inspect the degree of 

overlap to infer whether or not the parameter estimates 

differ. 

Figure 2 summarizes the results of the bootstrap 

distributions of �̂� generated via 5000 bootstrap iterations 

for each of the eight corpora. The solid black vertical line 

is the median  estimate and the dashed line is the mean 

 estimate. As in Figure 1, the median �̂� value is reported 

at the top of each figure. The top three graphs on the left-

hand-side correspond to the time-period corpora, and we 

see that the median �̂� values are very close, and further, 

that these distributions overlap significantly. Figure 3 (top 

panel) shows a comparison plot among the time-period 

corpora with the distributions plotted on the same graph. 

The significant overlap suggests that these corpora do not 

differ significantly in their parameter estimates. 

The remaining graphs in Figure 2 correspond to the 

media-form corpora, and in this case, we see a clear 

distinction between the media-form corpora. In particular, 

the bootstrap distributions for Fiction, Academic, and 

Spoken essentially do not overlap at all with any other 

media-form distribution, but Newspaper and Magazine 

look very similar and almost completely overlap. See 

Figure 3 (middle panel) for a comparison plot among the 

Corpus Median �̂�  Mean �̂� Range of xmin Range of xmax 

1800s 1.054 1.064 [10,150] [1400,2200] 

1900-49 1.048 1.056 [10,200] [1400,2200] 

1950-89 1.012 1.020 [30,250] [1200,2400] 

Spoken 1.155 1.159 [32,200] [1800,2800] 

Fiction 1.110 1.109 [20,200] [1600,3000] 

Magazine 0.9319 0.9364 [30,150] [1600,2400] 

Newspaper 0.9286 0.9433 [40,200] [1400,2200] 

Academic 0.8594 0.8586 [32,100] [7200,2200] 
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media-form corpora with the distributions plotted on the 

same graph. These results suggest that the  estimates for 

Fiction, Academic, and Spoken are significantly different 

from one another and from the Newspaper/Magazine pair, 

and that the estimates for Newspaper and Magazine are 

not significantly different.  

To further illustrate the relationship among these �̂� 

distributions, Figure 3 (bottom panel) is a summary plot 

that shows the bootstrap distributions for all eight corpora 

on the same graph. Here, we see that the three time-period 

corpora overlap with Fiction and both Newspaper and 

Magazines, whereas Academic and Spoken appear almost 

as outliers on opposite ends of the range of  estimates 

shown. 

Lastly, we note that using the truncated version of Zipf’s 

Law is necessary to correctly estimate  in each of the 

corpora. Including the most frequent words has the effect 

of underestimating  due to the non-linear curve of those 

top ranked data points (we ran the above analysis by 

setting xmin = 1 to verify that this is the case; results not 

shown). Including the tail of the distribution by setting 

xmax to the largest value in the sample has the effect of 

overestimating  due to the downward curve in the tail 

(see Figure 1). 

Figure 1: Bootstrap summary of Zipf’s Law fits for the eight corpora. Dark gray circles represent individual data points. 

Red line is the fitted model with slope equal to the median  estimate from 5000 bootstrap iterations (also reported at the 

top of each graph). The graphs are all plotted on a log-log scale with rank on the x-axis and word frequency (counts of 

words divided by total sum of word counts) on the y-axis. Vertical lines show the bounds for the xmin and xmax intervals used 

in the analysis of each corpus (see Table 2 for exact values). 
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Figure 2: Summary of bootstrap distributions generated from 5000 bootstrap iterations for the each of the eight corpora. 

The solid black vertical line is the median  estimate and the dashed line is the mean  estimate. The median  estimate is 

reported at the top of each figure. The black line tracing the histogram bars is the smoothed density function (scaled by the 

sample size) used to compare to the histogram counts. The time-period corpora are shown in the top three graphs in the left 

panel. The remaining graphs correspond to the media-form corpora. Note that the distributions for the Fiction, Academic, 

and Spoken corpora do not overlap significantly with any other distribution. Newspaper and Magazine look very similar, as 

do the three time-period distributions.
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Figure 3: Comparison of bootstrap distributions for  estimates across different corpora (same distributions as shown in 

Figure 2 but organized by category to illustrate how much the distributions overlap). Top panel: time-period data. Middle 

panel: media-form data. Bottom panel: all eight corpora. The time-period distributions overlap substantially, whereas the 

media-form distributions are spread out in comparison.
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Discussion 
The results of our analysis show that there are substantial 

differences between large corpora from the same 

language but from different contexts, and therefore, we 

conclude that the null hypothesis should be rejected. We 

find that there are significant differences between the 

Zipf’s Law parameter estimates for the media-form data 

(but not for the time-period data). This is illustrated nicely 

in Figure 3, showing the largely non-overlapping spread 

of the bootstrap distributions for  estimates among the 

time-period corpora. For three corpora (Academic, 

Fiction, and Spoken), the corresponding bootstrap 

distributions do not overlap with any other media-form 

distribution. Fiction, and to a small extent Spoken, 

overlap with the three time-period corpora bootstrap 

distributions. However, by comparison, the time-period 

data overlap significantly with each other which suggests 

that their parameter estimates do not differ significantly 

within their group.  

There are several possible directions for future research 

from here. First, it is clear from looking at any of the log-

log plots of the data that Zipf’s Law – which, on a log-log 

scale, is a straight line – is only useful for modelling the 

behavior of the intermediate frequency words of these 

corpora (i.e. the truly linear region of the rank-frequency 

plot). Since it was necessary to truncate the data to get 

useful inference, a further examination of how to choose 

upper and lower bounds would be one direction for future 

study. 

Another future direction is to determine a model for the 

remainder of the data (i.e. data in the upper and lower tails 

of the distribution representing the most and least frequent 

words) using something other than Zipf’s Law. Putting 

such a model together with the Zipf’s Law fit in a 

piecewise graph would form a more accurate, complete 

model for the data.  

Additionally, the manner in which the COCA and the 

COHA data was collected should be further investigated. 

Being able to source which texts the frequency data was 

taken from is important to the integrity of the model. For 

example, in the time-period data for the 1800s, suppose 

that there is a word which incidentally is only found in 

newspapers or non-fiction books from that era, but not 

magazines or fiction novels. Then there is a need to 

account for how the word frequency is affected by the 

media-form variable or not. 

Lastly, the goodness of fit of the model to the data should 

be more closely examined. Information such as a 

Kolmogorov-Smirnoff statistic (Chakravarti 1967) for 

each corpus would be relevant because it would offer 

inference on how well the model fits the data. That could 

also be used to compare the quality of model fits for each 

corpus to each other. 
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