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Introduction to Probability Theory

I Probabilities defined on events

I Conditional probability

I Independent events

I Bayes’ formula
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Probabilities Defined on Events

Consider a sample space S .

For each event E of S, we assume that P(E ) is defined and
satisfies the following three conditions:

(1) 0 ≤ P(E ) ≤ 1

(2) P(S) = 1

(3) For any sequence of event E1,E2, . . . that are mutually
exclusive, that is, events for which En ∩ Em = ∅ when n 6= m,
then

P
( ∞⋃

n=1

En

)
=
∞∑
n=1

P(En)
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Probabilities Defined on Events (cont’d)

Useful formula:

I P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

I When A and B are mutually exclusive (that is, when
A ∩ B = ∅), then

P(A ∪ B) = P(A) + P(B)

In the same way, we can write

P(A ∪ B ∪ C ) = P(A) + P(B) + P(C )

−P(A ∩ B)− P(A ∩ C )− P(B ∩ C )

+P(A ∩ B ∩ C )
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Example 1: Probabilities defined on events

The experiment consists of the flipping of a coin.
If we assume that a head is equally likely to appear as a tail, then

P(H) = P(T ) =
1

2

Now, suppose that we toss two coins. Then,

S = {(H,H), (H,T ), (T ,H), (T ,T )}

Each outcome has probability 1
4 .

Find the probability that either the first or the second coin falls
heads.
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Conditional Probability

Suppose that we toss two dice and that each of the 36 possible
outcomes is equally likely to occur and hence has probability 1

36 .

Suppose that we observe that the first die is a four.
Given this information, what is the probability that the sum of the
two dice equals six?

Possible outcomes: (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
Hence, the desired probability will be 1

6 .

General formula:

P(A|B) =
P(A ∩ B)

P(B)
when P(B) > 0
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Example 2: Conditional Probability

Suppose that cards numbered one through ten are placed in a hat,
mixed up, and then one of the cards is drawn.

If we are told that the number on the drawn card is at least five,
then what is the conditional probability that it is ten?
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Independent Events

Two events A and B are said to be independent if

P(A ∩ B) = P(A)P(B)

Also, A and B are independent if

P(A|B) = P(A)
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Bayes’ Formula
Let A and B be events. We may express A as

A = (A ∩ B) ∪ (A ∩ Bc)

Since (A ∩ B) and (A ∩ Bc) are mutually exclusive, we have that

P(A) = P(A ∩ B) + P(A ∩ Bc)

= P(A|B)P(B) + P(A|Bc)P(Bc)

This implies that P(A) is a weighted average of the conditional
probability of A given that B has occurred and the conditional
probability of A given that B has not occurred.
Using

P(A) =
n∑

i=1

P(A ∩ Bi ) =
n∑

i=1

P(A|Bi )P(Bi ),

we have

P(Bj |A) =
P(A ∩ Bj)

P(A)
=

P(A|Bj)P(Bj)∑n
i=1 P(A|Bi )P(Bi )

: Bayes’ formula
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Random Variables

I Discrete random variables

I Continuous random variables

I Expectation of a random variable

I Jointly distributed random variables

I Limit theorems

I Stochastic processes
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Discrete Random Variables

A random variable that can take on at most a countable number of
possible values is said to be discrete.

For a discrete random variable X , we define the probability mass
function of X by P(X = x).

I Bernoulli random variable

I Binomial random variable

I Geometric random variable

I Poisson random variable
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Bernoulli Random Variable
Suppose that a trial, or an experiment, whose outcome can be
classified as either “success” or as a “failure” is performed.
We let

X =

{
1 if outcome is a success
0 if outcome is a failure

The probability mass function of X is given by

P(X = 0) = 1− p = q and P(X = 1) = p,

where p is the probability that the trial is a “success”.
Simply,

P(X = x) = pxq1−x for x = 0, 1

I X ∼ Bernoulli(p)

I E (X ) = p

I Var(X ) = pq
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Binomial Random Variable

Suppose that n independent trials, each of which results in a
“success” with probability p and in a “failure” with probability
1− p, are to be performed.

If X represents the number of successes that occur in the n trials,
then X is said to be a binomial rv with parameters (n, p).

I X ∼ B(n, p)

I P(X = x) =
(n
x

)
px(1− p)n−x for x = 0, 1, . . . , n

I E (X ) = np and Var(X ) = npq

I By the binomial theorem, the probabilities sum to one.

n∑
x=0

P(X = x) =
n∑

x=0

(
n

x

)
pxqn−x = (p + q)n = 1

I Binomial theorem: (a + b)n =
∑n

k=0

(n
k

)
akbn−k
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Example 3: Binomial Random Variable

It is known that any item produced by a certain machine will be
defective with probability 0.1, independently of any other item.

What is the probability that in a sample of three items, at most
one will be defective?

X = number of defective items

P(X is at most one) = P(X = 0) + P(X = 1) = 0.972
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Geometric Random Variable

Suppose that independent trials, each having probability p of being
a success, are performed until a success occurs.
If we let X be the number of trials required until the first success,
then X is said to be a geometric rv with parameter p.

I X ∼ Geo(p)

I P(X = x) = (1− p)x−1p for x = 1, 2, . . .

I E (X ) = 1
p and Var(X ) = q

p2
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Poisson Random Variable

A random variable X , taking on one of the values 0, 1, 2, . . ., is
said to be a Poisson random variable with parameter λ, if for
some λ > 0,

P(X = x) =
e−λλx

x!

Since
∞∑
x=0

P(X = x) =
∞∑
x=0

e−λλx

x!
= 1,

we have

eλ =
∞∑
x=0

λx

x!

I X ∼ Poi(λ)

I E (X ) = λ and Var(X ) = λ
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Poisson Random Variable (cont’d)

An important property of the Poisson random variable is that it
may be used to approximate a binomial random variable when n is
large and p is small.

Suppose that X ∼ Bin(n, p) and let λ = np. Then,

P(X = x) =

(
n

x

)
px(1− p)n−x =

n!

(n − x)!x!
px(1− p)n−x

=
n!

(n − x)!x!

(λ
n

)x(
1− λ

n

)n−x
=

n(n − 1) · · · (n − x + 1)

nx
λx

x!

(1− λ/n)n

(1− λ/n)x

≈ e−λλx

x!
for n large and p small
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Example 4: Poisson Random Variable

1. Suppose that the number of typographical errors on a single
page of the book has a Poisson distribution with parameter
λ = 1.

Find the probability that there is at least one error on one
page.

P(X ≥ 1) ≈ 0.633

2. If the number of accidents occurring on a highway each day is
a Poisson random variable with parameter λ = 3, what is the
probability that no accidents occur today?

P(X = 0) ≈ 0.05
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Continuous Random Variables

X is a continuous random variable if there exists a nonnegative
function f (x), defined for all real x ∈ (−∞,∞), having the
property that for any set B of real numbers

P(X ∈ B) =

∫
B
f (x)dx

The cumulative distribution function is

F (a) = P(X ∈ (−∞, a]) =

∫ a

−∞
f (x)dx

I Uniform random variable

I Exponential random variable

I Gamma random variable

I Normal random variable
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Uniform Random Variable

A random variable is said to be uniformly distributed over the
interval (a, b) if its probability density function is given by

f (x) =

{
1

b−a for a < x < b

0 otherwise

I X ∼ Unif (a, b)

I E (X ) = 1
2 (a + b) and Var(X ) = 1

12 (b − a)2
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Exponential Random Variable

A continuous random variable whose probability density function is
given, for some λ > 0, by

f (x) =

{
λe−λx if x ≥ 0
0 if x < 0

is said to be an exponential random variable with parameter λ.

I X ∼ Exp(λ)

I E (X ) = 1
λ and Var(X ) = 1

λ2
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Gamma Random Variable

A continuous random variable whose density is given by

f (x) =

{
βα

Γ(α)x
α−1e−βx if x ≥ 0

0 if x < 0

for some α > 0 and β > 0, is said to be a gamma random variable
with parameters α and β.

I X ∼ Gamma(α, β)

I Γ(α) =
∫∞

0 e−xxα−1dx : Gamma function

I For a positive integer n, Γ(n) = (n − 1)!

I E (X ) = α
β and Var(X ) = α

β2
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Gamma Random Variable (cont’d)

I A gamma distribution with shape parameter α = 1 and scale
parameter β is an exponential distribution with parameter β.

I The sum of gamma (ni ,β) random variables has a gamma
(
∑

ni , β) distribution.

I The sum of n exponential (β) random variables is a gamma
(n,β) random variable.
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Normal Random Variable

X is a normal random variable with parameters µ and σ2 if the
density of X is given by

f (x) =
1√

2πσ2
e−(x−µ)2/2σ2

for −∞ < x <∞

I X ∼ N(µ, σ2)

I E (X ) = µ and Var(X ) = σ2
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Expectation of a Random Variable

I Discrete case
E (X ) =

∑
x

xP(X = x)

I Continuous case

E (X ) =

∫ ∞
−∞

xf (x)dx

I For any real-valued function g ,

E [g(X )] =
∑
x

g(x)P(X = x) for a discrete r.v. X

=

∫ ∞
−∞

g(x)f (x)dx for a continuous r.v. X

I If a and b are constants, then E [aX + b] = aE [X ] + b.

I Var(X ) = E
[
(X − E (X ))2

]
= E (X 2)− (E [X ])2
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Jointly Distributed Random Variables

I Joint distribution functions

I Independent random variables

I Covariance and variance of sums of random variables
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Joint distribution functions

For any two random variables X and Y , the joint cumulative
probability function of X and Y is given by

F (x , y) = P(X ≤ x ,Y ≤ y) for −∞ < x , y <∞

If X and Y are random variables and g is a function of two
variables, then

E [g(X ,Y )] =
∑
y

∑
x

g(x , y)P(X = x ,Y = y) : discrete case

=

∫ ∞
−∞

∫ ∞
−∞

g(x , y)f (x , y)dxdy : continuous case

For any constants a and b,

E (aX + bY ) = aE (X ) + bE (Y )
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Independent random variables

The random variables X and Y are said to be independent if, for
all x and y ,

P(X ≤ x ,Y ≤ y) = P(X ≤ x)P(Y ≤ y)

Similarly, we have

P(X = x ,Y = y) = P(X = x)P(Y = y) : discrete case

f (x , y) = fX (x)fY (y) : continuous case

If X and Y are independent, then for any functions h and g

E [g(X )h(Y )] = E [g(X )]E [h(Y )]

27



Covariance and variance of sums of random variables

The covariance of any two random variables X and Y is defined by

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]

= E [XY ]− E [X ]E [Y ]

If X and Y are independent, then Cov(X ,Y ) = 0.

For any random variables X , Y , Z and constant c ,

I Cov(X ,X ) = Var(X )

I Cov(X ,Y ) = Cov(Y ,X )

I Cov(cX ,Y ) = cCov(X ,Y )

I Cov(X ,Y + Z ) = Cov(X ,Y ) + Cov(X ,Z )
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Example 5: Sums of Independent Poisson Random
Variables

Let X and Y be independent Poisson random variables with
respective means λ1 and λ2.
Calculate the distribution of X + Y .

The event {X + Y = n} = {X = k ,Y = n − k} for 0 ≤ k ≤ n

P(X + Y = n) =
n∑

k=0

P(X = k ,Y = n − k)

=
n∑

k=0

P(X = k)P(Y = n − k)

=
n∑

k=0

e−λ1λk1
k!

e−λ2λn−k2

(n − k)!

=
e−(λ1+λ2)(λ1 + λ2)n

n!
Hence, X + Y has a Poisson distribution with mean λ1 + λ2.
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Example 6: Order Statistics

Let X1, . . . ,Xn be iid continuous random variables with probability
distribution F and density function f .

If we let X(i) denote the ith smallest of these random variables,
then X(1), . . . ,X(n) are called the order statistics.

For example, if n = 3 and X1 = 4, X2 = 5, X3 = 1, then X(1) = 1,
X(2) = 4, X(3) = 5.

The density function of X(i) is

fX(i)
(x) =

n!

(n − i)!(i − 1)!
f (x)(F (x))i−1(1− F (x))n−i

: quite intuitive
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Limit Theorems
Strong Law of Large Numbers

Let X1,X2, . . . be a sequence of independent random variables
having a common distribution, and let E (Xi ) = µ. Then, with
probability 1,

X1 + X2 + · · ·+ Xn

n
→ µ as n→∞

Central Limit Theorem (holds for any distribution of X)

Let X1,X2, . . . be a sequence of independent, identically
distributed random variables, each with mean µ and variance σ2.
Then the distribution of X1+X2+···+Xn−nµ

σ
√
n

tends to the standard

normal as n→∞. That is,

P
(X1 + X2 + · · ·+ Xn − nµ

σ
√
n

≤ a
)
→ 1√

2π

∫ a

−∞
e−x

2/2dx
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Stochastic Processes

A stochastic process {X (t); t ∈ T} is a collection of random
variables. That is, for each t ∈ T , X (t) is a random variable.

I The index t is often interpreted as time
I X (t) is the state of the process at time t. For example,

I the total number of customers that have entered a
supermarket by time t

I the number of customers in the supermarket at time t

I The set T is called the index set of the process.
I When T is a countable set, a discrete-time process.
I If T is an interval of the real line, a continuous-time process.

I The state space of a stochastic process is defined as the set
of all possible values that X (t) can assume.

I Thus, a stochastic process is a family of random variables that
describes the evolution through time of some (physical)
process.
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Conditional Probability and Conditional Expectation

I Discrete Case

I Continuous Case

I Computing Expectations by Conditioning

I Computing Variances by Conditioning

I Computing Probabilities by Conditioning
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Discrete Case

If X and Y are discrete random variables, then the conditional
probability mass function of X given that Y = y is defined by

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)

for all values of y such that P(Y = y) > 0.

The conditional expectation of X given that Y = y is defined by

E (X |Y = y) =
∑
x

xP(X = x |Y = y)

If X is independent of Y , then

P(X = x |Y = y) = P(X = x)
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Example 7
X and Y are independent Poisson random variables with respective
means λ1 and λ2. Calculate the conditional expected value of X
given that X + Y = n.

First calculate the conditional pmf of X given that X + Y = n.

P(X = k |X + Y = n) =
P(X = k ,X + Y = n)

P(X + Y = n)

=
P(X = k,Y = n − k)

P(X + Y = n)

=
P(X = k)P(Y = n − k)

P(X + Y = n)

=

(
n

k

)( λ1

λ1 + λ2

)k( λ2

λ1 + λ2

)n−k
That is, X |X + Y = n ∼ B(n, λ1

λ1+λ2
).

Thus, E (X |X + Y = n) = n λ1
λ1+λ2

35



Continuous Case

If X and Y have a joint pdf f (x , y), then the conditional pdf of X ,
given that Y = y , is defined for all values of y such that
fY (y) > 0, by

fX |Y (x |y) =
f (x , y)

fY (y)

The conditional expectation of X , given that Y = y , is defined for
all values of y such that fY (y) > 0, by

E (X |Y = y) =

∫ ∞
−∞

xfX |Y (x |y)dx
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Computing Expectations and Variances by Conditioning

E (X |Y ) is a function of the random variable Y . At Y = y , the
value is E (X |Y = y). Note that E (X |Y ) is itself a random
variable.

For all random variables X and Y ,

E (X ) = E [E (X |Y )]

Var(X ) = E [Var(X |Y )] + Var [E (X |Y )]

37



Example 8

Suppose that the expected number of accidents per week at an
industrial plant is four. Suppose also that the numbers of workers
injured in each accident are independent random variables with a
common mean of 2. Assume also that the number of workers
injured in each accident is independent of the number of accidents
that occur. What is the expected number of injuries during a
week?

Let
N = the number of accidents
Xi = the number of workers injured in the ith accident
(i = 1, 2, · · · )
Then,

∑N
i=1 Xi = the total number of injuries

Find E (
∑N

i=1 Xi ).
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Example 8 (cont’d)

E
( N∑

i=1

Xi

)
= E

[
E
( N∑

i=1

Xi

∣∣∣N)]
= E (NE (X ))

= E (N)E (X )

= 8

since E
( N∑

i=1

Xi

∣∣∣N = n
)

= E
( n∑

i=1

Xi

∣∣∣N = n
)

= E
( n∑

i=1

Xi

)
(b/c N ⊥ Xi )

=
n∑

i=1

E (Xi ) = nE (X )

∑N
i=1 Xi is called a compound random variable.
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Example 9
In Example 8, let us assume that N is a Poisson random variable
with mean λ and X is a iid random variable with mean µ and
variance σ2. Find Var(

∑N
i=1 Xi ).

Var
( N∑

i=1

Xi

)
= E

[
Var
( N∑

i=1

Xi

∣∣∣N)]+ Var
[
E
( N∑

i=1

Xi

∣∣∣N)]
= E [NVar(X )] + Var [NE (X )]

= E (N)Var(X ) + [E (X )]2Var(N)

= λ(σ2 + µ2)

1 Var
( N∑

i=1

Xi

∣∣∣N = n
)

= Var
( n∑

i=1

Xi

∣∣∣N = n
)

= nVar(X )

2 E
( N∑

i=1

Xi

∣∣∣N = n
)

= E
( n∑

i=1

Xi

∣∣∣N = n
)

= nE (X )
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Computing Probabilities by Conditioning

P(X = x) =
∑
y

P(X = x |Y = y)P(Y = y) : discrete case

fX (x) =

∫ ∞
−∞

fX |Y (x |y)fY (y)dy : continuous case
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Example 10

Suppose that the number of people who visit a yoga studio each
day is a Poisson random variable with mean λ. Suppose further
that each person who visits is, independently, female with
probability p or male with probability 1− p. Find the joint
probability that exactly n women and m men visit the academy
today.

Define
N = the number of visitors
N1 = the number of female visitors
N2 = the number of male visitors

That is, we want to find P(N1 = n,N2 = m)
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Example 10 (cont’d)

Since P(X = x) =
∑

y P(X = x |Y = y)P(Y = y),

P(N1 = n,N2 = m) =
∞∑
i=0

P(N1 = n,N2 = m|N = i)P(N = i)

= P(N1 = n,N2 = m|N = n + m)P(N = n + m)

= e−λp
(λp)n

n!
e−λ(1−p) (λ(1− p))m

m!

1 P(N1 = n,N2 = m|N = n + m) = P(N1 = n|N = n + m)

⇒ Binomial(n + m, p)

2 P(N = n + m) ⇒ Poisson(λ)
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Example 10 (cont’d)

Interestingly,

P(N1 = n) =
∞∑

m=0

P(N1 = n,N2 = m) = e−λp
(λp)n

n!

⇒ Poisson(λp)

P(N2 = m) =
∞∑
n=0

P(N1 = n,N2 = m) = e−λ(1−p) (λ(1− p))m

m!

⇒ Poisson(λ(1− p))

We will discuss this in Chapter 2 (Poisson process) later.
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Arithmetic sequence

The n-th term of an arithmetic sequence with initial value a1 and
common difference of successive numbers d is given by
an = a1 + (n − 1)d . Such a sequence also follows the recursive
relation an = an−1 + d for every integer n ≥ 1.
An arithmetic series is the sum of the numbers in a finite
arithmetic sequence.

Sn =
n∑

i=1

ai =
1

2
n{2a1 + (n − 1)d}.

Example: Find the 20th term for 1, 4, 7, 10, 13, · · · .
a1 = 1, d = 3, thus the nth term an = 3n − 2.
The 20th term is 58.
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Geometric sequence

The n-th term of a geometric sequence with initial value a1 and
common ratio r is given by an = a1r

n−1. Such a geometric
sequence also follows the recursive relation an = ran−1 for every
integer n ≥ 1.
A geometric series is the sum of the numbers in a geometric
sequence.

Sn =
n∑

i=1

ai =

{
a1(1−rn)

1−r if |r | 6= 1

a1n if |r | = 1

An infinite geometric series is

∞∑
i=1

ai =

{ a1
1−r if |r | < 1

∞ if |r | ≥ 1

Example: Sum up all the terms for the following sequence:
2, 1, 0.5, 0.25, 0.125, 0.0625, · · ·
a1 = 2, r = 0.5, thus the sum is 4
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Difference sequence

A difference sequence {bn} is the difference between the successive
terms of another sequence {an}. That is, bn = an+1 − an. Now,
{bn} can be an arithmetic sequence or geometric sequence.

For example, we have a sequence {1, 4, 9, 16, . . .}. Its difference is
{3, 5, 7, . . .}. That is, a1 = 1, a2 = 4, a3 = 9, a4 = 16, . . .. The
difference sequence is b1 = a2 − a1 = 3, b2 = a3 − a2 = 5,
b3 = a4 − a3 = 7. That is, {bn} is an arithmetic sequence with
initial value 3 and common difference 2.

The original sequence is

an = a1 +
n−1∑
i=1

bi
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