STAT 467/667 Homework 2

SPRING 2015

Due in class on Friday February 6.

1. (Stat 467 only) Suppose that X and Y have a continuous joint distribution for which the joint PDF is as follows:

$$
f(x, y)= \begin{cases}\left(\frac{3}{2}\right) y^{2} & \text { for } 0 \leq x \leq 2 \text { and } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine the marginal PDFs of X and Y.
(b) Determine the conditional PDFs of X given $Y=y$ and of Y given $X=x$.
(c) Compute the probability $P(X<1 \mid Y=0.5)$.
2. (Stat 667 only) Suppose that X and Y have a continuous distribution for which the joint PDF is as follows:

$$
f(x, y)= \begin{cases}\left(\frac{15}{4}\right) x^{2} & \text { for } 0 \leq y \leq 1-x^{2} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine the marginal PDFs of X and Y.
(b) Are X and Y independent?
(c) Determine the conditional PDFs of X given $Y=y$ and of Y given $X=x$.
3. Suppose there are 4 red and 6 green marbles in a box, and two are taken out with no replacement. Let X_{1} and X_{2} be indicator random variables associated with selecting a red marble, i.e., $X_{i}=1$ if the $i^{\text {th }}$ marble selected is red and 0 otherwise.
(a) Determine the joint PDF of X_{1} and X_{2}.
(a) Determine the marginal PDFs of X_{1} and X_{2}.
(b) Are X_{1} and X_{2} independent?
(c) Determine the conditional PDFs of X_{1} given $X_{2}=1$ and of X_{2} given $X_{1}=0$.
4. What is the probability that the larger of two random observations drawn from any continuous PDF will exceed the 60th percentile?
5. Let X_{1}, \ldots, X_{n} be a random sample of size n from a probability distribution given by the $\operatorname{PDF} f$. For each of the following choices of f determine the joint PDF of the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
(a) f if the pdf of the Poisson distribution with parameter (mean) λ.
(b) f is the pdf of the Bernoulli distribution with parameter p.
(c) f is the pdf of the geometric distribution with parameter p.
(d) f is the pdf of the gamma distribution with parameters α and β.
6. Let X_{1}, \ldots, X_{n} be a random sample of size n from a probability distribution given by the PDF f. For each of the following choices of f determine the joint PDF of the sum $Y=X_{1}+\cdots+X_{n}$. [Hint: Use the moment generating function].
(a) f if the pdf of the Poisson distribution with parameter (mean) λ.
(b) f is the pdf of the Bernoulli distribution with parameter p.
(c) f is the pdf of the geometric distribution with parameter p.
(d) f is the pdf of the gamma distribution with parameters α and β.

