Due in class on Friday February 13. Make sure to note whether the question is asking for the estimate θ_{e} or the estimator $\hat{\theta}$.

1. Chapter 5, No. 5.2.1 (Stat 467 only)

A random sample of size 8: $X_{1}=1, X_{2}=0, X_{3}=1, X_{4}=1, X_{5}=0, X_{6}=1, X_{7}=$ $1, X_{8}=0$ is taken from the probability function

$$
p_{X}(k \mid \theta)=\theta^{k}(1-\theta)^{1-k}, \quad k=0,1 ; \quad 0<\theta<1
$$

Find the maximum likelihood estimate for θ.
2. Chapter 5, No. 5.2.3

Use the sample $Y_{1}=8.2, Y_{2}=9.1, Y_{3}=10.6, Y_{4}=4.9$ to calculate the maximum likelihood estimate for λ in the exponential PDF

$$
f_{Y}(y \mid \lambda)=\lambda e^{-\lambda y}, \quad y \geq 0
$$

3. Chapter 5, No. 5.2.4

Suppose a random sample of size n is drawn from the probability model

$$
p_{X}(k \mid \theta)=\frac{\theta^{2 k} e^{-\theta^{2}}}{k!}, \quad k=0,1,2, \ldots
$$

Find a formula for the maximum likelihood estimator, $\hat{\theta}$.
4. Chapter 5, No. 5.2.6

Use the method of maximum likelihood to estimate θ in the PDF

$$
f_{Y}(y \mid \theta)=\frac{\theta}{2 \sqrt{y}} e^{-\theta \sqrt{y}}, \quad y>0
$$

Evaluate θ_{e} for the following random sample of size 4: $Y_{1}=6.2, Y_{2}=7.0, Y_{3}=2.5, Y_{4}=$ 4.2.

5. Chapter 5, No. 5.2.10 (Stat 667 only)

Find the maximum likelihood estimate for θ in the PDF

$$
f_{Y}(y \mid \theta)=\frac{2 y}{1-\theta^{2}}, \quad \theta \leq y \leq 1
$$

if a random sample of size 6 yielded the measurements $0.70,0.63,0.92,0.86,0.43,0.21$.

6. Chapter 5, No. 5.2.12

If the random variable Y denotes an individual's income, Pareto's law claims that $P(Y \geq y)=\left(\frac{k}{y}\right)^{\theta}$, where k is the entire population's minimum income. It follows that $F_{Y}(y)=1-\left(\frac{k}{y}\right)^{\theta}$, and by differentiation,

$$
f_{Y}(y \mid \theta)=\theta k^{\theta}\left(\frac{1}{y}\right)^{\theta+1}, \quad y \geq k, \quad \theta \geq 1
$$

Assume k is known. Find the maximum likelihood estimator for θ if income information has been collected on a random sample of 25 individuals.

7. Chapter 5, No. 5.2.15

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a random sample of size n from the uniform PDF, $f_{Y}(y \mid \theta)=\frac{1}{\theta}, 0 \leq$ $y \leq \theta$. Find a formula for the method of moments estimate (MOM) for θ. Compare the values of the MOM estimate and the maximum likelihood estimate if a random sample of size 5 consists of the numbers $17,92,46,39$, and 56 .
(Hint: See your class notes from 2/6/15 for the MLE!)

8. Chapter 5, No. 5.2.16

Use the method of moments to estimate θ in the PDF

$$
f_{Y}(y \mid \theta)=\left(\theta^{2}+\theta\right) y^{\theta-1}(1-y), \quad 0<y<1
$$

Assume that a random sample of size n has been collected.

9. BONUS QUESTION: Chapter 5, No. 5.2.9 part (b)

Suppose the random sample $Y_{1}=6.3, Y_{2}=1.8, Y_{3}=14.2, Y_{4}=7.6$ represents the two-parameter uniform PDF

$$
f_{Y}(y \mid \theta)=\frac{1}{\theta_{2}-\theta_{1}}, \quad \theta_{1} \leq y \leq \theta_{2}
$$

Find the maximum likelihood estimates for θ_{1} and θ_{2}.

