STAT 467/667 Homework 6 SPRING 2015

Due in class on Friday March 13. These problems refer to the 4^{th} Edition.

- 1. Chapter 5, No. 5.8.1
- 2. Chapter 5, No. 5.8.7
- 3. Chapter 5, No. 5.8.8
- 4. Suppose that $X_1, X_2, ..., X_n$ are *i.i.d* Bernoulli random variables with parameter θ . That is, each random variable has PDF $f_X(x \mid \theta) = \theta^x (1 - \theta)^{1-x}$ for x = 0, 1. Further, assume that the prior distribution of θ is the uniform PDF on [0, 1].
 - (a) Compute the posterior distribution of θ given the data $X_1, X_2, ..., X_n$.
 - (b) Compute the Bayes estimate of θ assuming the squared error loss function $L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2.$
 - (c) Illustrate the above calculations when n = 100 and $\sum_{i=1}^{n} X_i$ is 0, 50, and 100. Write a few sentences describing the effect of data on the posterior distribution and the Bayes estimate.
- 5. (BONUS QUESTION) How does the posterior distribution change in Problem 4 if we assume that the prior distribution of θ is the beta PDF with parameters r and s? Explain how Problem 4 is a special case of this one.