STAT 706 Homework 1 SPRING 2019

Due on Thursday January 31 at the beginning of lecture.

- 1. Suppose that $\Omega = \{1, 2\}$, with $P(\emptyset) = 0$ and $P(\{1, 2\}) = 1$. Suppose $P(\{1\}) = \frac{1}{4}$. Prove that P is countably additive if and only if $P(\{2\}) = \frac{3}{4}$.
- 2. Suppose that $\Omega = \{1, 2, 3\}$ and \mathcal{F} is the collection of all subsets of Ω .
 - (a) List all the elements in \mathcal{F} .
 - (b) Find necessary and sufficient conditions on the real numbers x, y, and z such that there exists a countably additive probability measure P on \mathcal{F} , with $x = P(\{1, 2\})$, $y = P(\{2, 3\})$, and $z = P(\{1, 3\})$.
- 3. Suppose that $\Omega = \mathbb{N}$ is the set of natural numbers, and P is defined for all $A \subseteq \Omega$ by P(A) = 0 if A is finite, and P(A) = 1 if A is infinite. Is P countably additive? Justify your answer.
- 4. Let $\Omega = \{1, 2, 3, 4\}$. Determine whether or not each of the following is a σ -algebra.
 - (a) $\mathcal{F}_1 = \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$ (b) $\mathcal{F}_2 = \{\emptyset, \{3\}, \{4\}, \{1, 2\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 3, 4\}\}$ (c) $\mathcal{F}_3 = \{\emptyset, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3, 4\}\}$

5. Let

 $\mathcal{J} = \{ \text{all intervals contained in } [0,1] \}.$

Prove that

 $\mathcal{B}_0 = \{ \text{all finite unions of elements of } \mathcal{J} \}$

is an algebra (or field) of subsets of $\Omega = [0, 1]$, meaning that it contains Ω and \emptyset , and is closed under the formation of complements and of finite unions and intersections.

6. Prove that \mathcal{B}_0 , as defined in Problem 5 above, is not a σ -algebra.