STAT 706 Homework 3 SPRING 2019

Due on Thursday February 14 at the beginning of lecture.

- 1. Let $(\Omega_1, \mathcal{F}_1, P_1)$ be Lebesgue measure on [0, 1]. Consider a second probability triple $(\Omega_2, \mathcal{F}_2, P_2)$ defined as follows: $\Omega_2 = \{1, 2\}$, \mathcal{F}_2 consists of all subsets of Ω_2 , and P_2 is defined by $P_2(\{1\}) = \frac{1}{3}$, $P_2(\{2\}) = \frac{2}{3}$, and additivity. Let (Ω, \mathcal{F}, P) be the product measure of $(\Omega_1, \mathcal{F}_1, P_1)$ and $(\Omega_2, \mathcal{F}_2, P_2)$ (see definition on p.23 of Rosenthal).
 - (a) Express each of Ω , \mathcal{F} , and P as explicitly as possible.
 - (b) Find a set $A \in \mathcal{F}$ such that $P(A) = \frac{3}{4}$.
 - (c) Give an example of a random variable X defined on $(\Omega_1, \mathcal{F}_1, P_1)$ (other than a uniform RV). Verify that X is \mathcal{F}_1 -measurable.
 - (d) Give an example of a random variable Y defined on $(\Omega_2, \mathcal{F}_2, P_2)$. Verify that Y is \mathcal{F}_2 -measurable.
- 2. Show that if events E and F are independent and $E \subset F$, then either P(E) = 0 or P(F) = 1.
- 3. Prove that if E and F are independent events, then so are E and F^{C} .
- 4. Suppose that A_1, A_2, \ldots, A_n are mutually independent events.
 - (a) Prove that $A_1 \cup A_2 \cup \cdots \cup A_{n-1}$ and A_n are independent events. [Hint: Use induction!]
 - (b) Prove that $P(\bigcap_{k=1}^{n} A_k^c) = \prod_{k=1}^{n} P(A_k^c)$. [Hint: Use induction, part (a), and problem 3.]
- 5. Suppose that $\{A_n\} \nearrow A$. Let $f: \Omega \to \mathbb{R}$ be any function. Prove that

$$\lim_{n \to \infty} \inf_{\omega \in A_n} f(\omega) = \inf_{\omega \in A} f(\omega).$$