STAT 706 Homework 4 SPRING 2019

Due on Tuesday February 26 at the beginning of lecture. Note: R stands for exercises in Rosenthal's book.

1. (R 3.6.7)

Let (Ω, \mathcal{F}, P) be the uniform distribution on $\Omega = \{1, 2, 3\}$. That is, $P(A) = |A|/|\Omega|$ for all $A \in \mathcal{F} = 2^{\Omega}$ (where |A| is the cardinality of set A). Give an example of a sequence $A_1, A_2, \dots \in \mathcal{F}$ such that

$$P\left(\liminf_{n\to\infty} A_n\right) < \liminf_{n\to\infty} P(A_n) < \limsup_{n\to\infty} P(A_n) < P\left(\limsup_{n\to\infty} A_n\right),$$

i.e. such that all three inequalities are strict.

2. (R 3.6.9)

Let (Ω, \mathcal{F}, P) be a probability space and let $A_1, A_2, \ldots, B_1, B_2, \ldots$ be events in \mathcal{F} .

(a) Prove that

$$\left(\limsup_{n\to\infty} A_n\right) \cap \left(\limsup_{n\to\infty} B_n\right) \supseteq \limsup_{n\to\infty} (A_n \cap B_n).$$

- (b) Give an example where the above inclusion is strict, and another example where it holds with equality.
- 3. (R 3.6.11)

Let $\{X_n\}_{n=1}^{\infty}$ be independent random variables with $X_n \sim \text{Uniform}(\{1, 2, ..., n\})$ (see definition in Problem 1 above). Compute $P(X_n = 5 \ i.o.)$, the probability that an infinite number of the X_n are equal to 5.

4. (R 3.6.16)

Consider infinite, independent, fair coin tossing (see lecture 7 notes). Let H_n be the event that the n^{th} coin toss is heads. Determine the following probabilities:

- (a) $P(H_{n+1} \cap H_{n+2} \cap \cdots \cap H_{n+9} i.o.)$.
- (b) $P(H_{n+1} \cap H_{n+2} \cap \cdots \cap H_{2n} i.o.).$
- (c) Prove that $P(H_{n+1} \cap H_{n+2} \cap \cdots \cap H_{n+\lceil \log_2 n \rceil} \ i.o.)$ must equal either 0 or 1.
- 5. (R 3.6.13)

Let $X_1, X_2, ...$ be defined jointly on some probability space (Ω, \mathcal{F}, P) , with $E[X_n] = 0$ and $E[(X_n)^2] = 1$ for all $n \in \mathbb{N}$. Prove that $P(X_n \ge n \ i.o.) = 0$.

6. (R 4.5.1)

Let (Ω, \mathcal{F}, P) be Lebesgue measure on [0,1] and set

$$X(\omega) = \begin{cases} 1, & 0 \le \omega < \frac{1}{4} \\ 2\omega^2, & \frac{1}{4} \le \omega < \frac{3}{4} \\ \omega^2, & \frac{3}{4} \le \omega \le 1. \end{cases}$$

Compute $P(X \in A)$ where

- (a) A = [0, 1].
- (b) $A = [\frac{1}{2}, 1].$