Lecture 11

Recap of Discrete-time Markov Chains (DTMC)
$\left\{x_{n}: n=0,1, \ldots\right\}$ is a DTMC on state space S.
Markov Property:
$P\left(x_{n+1}=j \mid x_{n}=i\right)=P_{i j} \leftarrow$ entry in \mathbb{P} (transition $\left.\begin{array}{c}\text { matrix }\end{array}\right)$ matrix) is independent of past history of $M C$, only depends on current state $X_{n}=i$,
classification of States
$i \leftrightarrow j \quad i \neq j$ communicate
If all states communicate, $M C$ is irreducible recurrent vs transient states
(positive recurrent if $m_{i}<\infty$
null recurrent if $m_{i}=\infty$
where $m_{i}=E\left[N_{i} \mid x_{0}=i\right], N_{i}=\min \left\{n>0: x_{n}=i\right\}$
\backslash expected \# transitions to return to i \# of transitions until MC moves to state i

Note: Quantity $\sum_{n=0}^{\infty} I_{n}$ counts \# of times $M C$ is in state i

NOT the same as m_{i} !!
(e.g. Say $M C$ visits state i in times by time n exp. return time is 50 time steps.

- If i transient :

$$
\begin{gathered}
\sum_{n=1}^{\infty} P_{i i}^{n}<\infty \quad \begin{array}{c}
\text { only visit transient } \\
\text { state a finite } \# \text { of times }
\end{array} \\
P\left(N_{i}=\infty \mid X_{0}=i\right)>0 \quad \text { and } m_{i}=\infty \\
\text { esl. return time }
\end{gathered}
$$

- If i is recurrent:

$$
\sum_{n=1}^{\infty} P_{i i}^{n}=\infty \quad \begin{array}{r}
\text { return to recurrent } \\
\text { state infinitely often }
\end{array}
$$

If $m_{i}<\infty$, then i is positive recurrent If $m_{i}=\infty$, then i is null recurrent

Interpretation
A positive recurrent state -returns are relatively quick.
A null recurrent state - can take a very long time for MC to return to that state.

$$
\underset{\text { time }}{ }=\infty)
$$

Note: If a $M C$ is finite, all recurrent states are positive recurrent.
(Can only have null recurrent state if S has $\infty \#$) of states!

Lecture 11

Limiting Probabilities, Stationary Distribution $\$ 4.4$
Let $\left\{\pi_{j}, j \geqslant 0\right\}$ be the long-run proportion of transitions that come from state j

Then $\pi_{i} P_{i j}=10 n g-r u n$ prop. of transitions from i to j
Tho: Consider an irreducible MC. If the chain is positive recurrent, then the long-ron proportions are the unique solution of

* $\left\{\begin{array}{l}\pi_{j}=\sum_{i \in S} \pi_{i} P_{i j}, j \geqslant 0 \\ \sum_{j \in S} \pi_{j}=1 .\end{array}\right.$

If there is no solution to equs above, then $M C$ is either transient or null recurrent and all $\pi_{j}=0$.

Note: The long-run proportions $\pi_{j}, j \geqslant 0$ are called stationary probabilities.

$$
\pi=\left[\begin{array}{llll}
\pi_{1} & \pi_{2} & \ldots & \pi_{j} \ldots
\end{array}\right] \quad \text { - stationary distribution } \quad \text { (for all } j \in S \text {) }
$$

More compactly written: $\prod_{\substack{\hat{\lambda}}}=\pi \mathbb{R} \mathbb{K}_{\text {matrix }}$

Main Idea:
If $P\left(x_{0}=j\right)=\pi_{j}$, then $P\left(x_{n}=j\right)=\pi_{j} \quad \forall n, j \geqslant 0$ start in state j be in state j after n steps
\rightarrow Example: Simple random walk on \mathbb{R}

- symmetric RW is null recurrent ($p=\frac{1}{2}$)
- asymmetric RW is transient $\left(p \neq \frac{1}{2}\right)$

Limiting Probabilities
Consider the 2-state DTMC given by

$$
\mathbb{P}=0\left[\begin{array}{cc}
0 & 1 \tag{}\\
0,7 & 0,3 \\
0,4 & 0.6
\end{array}\right]
$$

Note that

$$
\mathbb{P}^{4}=\left[\begin{array}{ll}
0.575 & 0.425 \\
0.564 & 0.433
\end{array}\right] \Leftrightarrow \mathbb{P}^{8}=\left[\begin{array}{ll}
0.572 & 0.428 \\
0.570 & 0.430
\end{array}\right]
$$

very close ξ rows are almost identical

Lecture 11

It seems that the long-run proportions

$$
\pi_{0}=\frac{4}{7} \approx 0.571 \quad \frac{1}{2} \quad \pi_{1}=\frac{3}{7} \approx 0.429
$$

(computed in book $\$ 4.4$ Ex. 4.20) -Solve eqns $*$ to get these
may also be the limiting probabilities.
True in this case, but NOT true in general.
Counter example - Periodic Chain

$$
\mathbb{P}=0\left[\begin{array}{ll}
0 & 1 \tag{0}\\
0 & 1 \\
1 & 0
\end{array}\right]
$$

this MC continually alternates blt states $0 \& 1$ so $\pi_{0}=\pi_{1}=\frac{1}{2}$.

BUT

$$
P_{00}^{n}=\left\{\begin{array}{ll}
1 & \text { if } n \text { even } \\
0 & \text { if } n \text { odd }
\end{array} \quad \text { so } P_{00}^{n} \rightarrow ? \text { as } n \rightarrow \infty\right.
$$

does NoT have a limiting value!!

* If a MC can only return to a state in a multiple of $d>1$ steps $(d=2$ in above example $)$, it is called periodic; does NOT have limiting probabilities.
def: $A M C$ that is not periodic is called aperiodic. (all states have period 1.)

The: For an irreducible MC that is aperiodic, limiting probabilities always exist $\frac{n}{n}$ do NOT depend on the initial state. i.

$$
\lim _{n \rightarrow \infty} P_{i j}^{n} \text { exists }
$$

Further, ${\underset{\substack{\text { limiting } \\ \text { prob. }}}{\pi_{j}^{*}}=\lim _{N \rightarrow \infty}}_{\alpha_{j}^{*}}^{\pi_{j}^{*} \text { satisfies equs } *,}$ unique som.
def: State i has period d if

For large N, this is long-run proportion of time described before $\left(\pi_{j}\right)$
where

$$
\alpha_{j}(N)=\text { amount of }
$$ time $M C$ spends in state j during time $1,2, \ldots, N$

$P_{i i}{ }^{n}=0$ whenever n is NOT divisible by d, and d is the largest integer with this property.

Periodicity $=$ Class property: if $i \leftrightarrow j$, then $i \varepsilon j$ have same period.
def: A aperiodic state is a state with period I

Periodicity $=$ class property: if $i \longleftrightarrow j$, then $i \frac{\varepsilon}{\varepsilon} j$. have the same/ period.

Example: Simple RW on \mathbb{Z}

- If you leave a state, can only come back in an even \#.of steps.
- Period of any state is 2. (Verify in R.)

e.g. $0 \rightarrow 1 \rightarrow 0 \quad$ Return to 0 in 2 steps
did Example: $M C$ on 4 states with

$$
\begin{aligned}
& P=\left[\begin{array}{llll}
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \begin{array}{c}
\text { All states } \\
\text { have period } 3 . \\
\text { (Verify this in } R .)
\end{array} \\
& \text { eng. } 0 \rightarrow 1 \rightarrow 2 \rightarrow 0 \\
& 0 R
\end{aligned}
$$

Lecture 11
Stat 753

Example 1: 3 state $M C$ with transition matrix

$$
\mathbb{P}=\left[\begin{array}{lll}
0.5 & 0.4 & 0.1 \\
0.3 & 0.4 & 0.3 \\
0.2 & 0.3 & 0.5
\end{array}\right]
$$

In the long ron, what proportion of time is the process in each of the 3 states?

Sorn: (1) Solve $\pi=\pi \mathbb{P}$ (ie. $\pi_{j}=\sum_{i=0}^{2} \pi_{i} P_{i j} \quad \forall j$)

$$
\left\{\begin{array}{l}
\pi_{0}=0.5 \pi_{0}+0.3 \pi_{1}+0.2 \pi_{2} \\
\pi_{1}=0.4 \pi_{0}+0.4 \pi_{1}+0.3 \pi_{2} \\
\pi_{2}=\cdots
\end{array} \quad \underline{\pi_{0}+\pi_{1}+\pi_{2}=1}\right.
$$

OR (2) put \mathbb{P} into R 会 raise it to a large enough power to see columns converge to

$$
\begin{aligned}
& \mathbb{P}_{i}^{n}=\left[\begin{array}{lll}
\pi_{0} & \pi_{1} & \pi_{2}
\end{array}\right] . \\
& \lambda_{i} \\
& \text { row } i \\
& \text { (all same } \\
& \text { after some } n \text {) }
\end{aligned}
$$

Ans: $\pi_{0}=\frac{21}{62} \approx 0.3387, \pi_{1}=\frac{23}{62} \approx 0.3710, \pi_{2}=\frac{18}{62} \approx 0.2903$

Recall example from last week: $\{0,1\},\{3\},\{2\}$ no unique stationary distribution

Mean Time spent in Transient states 4.6

Recall: Once a MC enters a recurrent state, it can never leave that class
\Rightarrow Each recurrent class is a closed class

State i recurrent $i \nVdash j$ (does NoT communicate), then $P_{i j}=0$.

In particular,

$$
\left.\begin{array}{l}
k \text { recurrent } \\
j \text { transient }
\end{array}\right\} \Rightarrow P_{k j}=0
$$

Consider a finite state MC.
$T=\{1,2, \ldots, t\}$ denotes the set of transient states

Lecture 11

$$
\mathbb{P}_{T}=\left[\begin{array}{ccc}
p_{11} & \cdots & p_{1 t} \\
p_{21} & \cdots & p_{2 t} \\
\vdots & & \vdots \\
p_{t 1} & \cdots & p_{t t}
\end{array}\right]
$$

matrix of 1 -step transition probabilities from transient states to transient states

* Sum of rows might be less than 1! why? closed class of
states states
For $i, j \in T$,
$s_{i j}=$ expected $\#$ of times $M C$ is in state j given that it starts in state i

$$
\Rightarrow s_{i j}=\delta_{i j}+\sum_{k=1}^{t} P_{i k} s_{k j}
$$

Kronecker delta

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

In Matrix Notation: $S=I+P_{T} S$
where $S=\left[\begin{array}{ccc}s_{11} & \cdots & s_{1 t} \\ \vdots & \ddots & \vdots \\ s_{t 1} & & s_{t t}\end{array}\right]$

Solving for S yields:
Details

$$
\dot{S}=\left(I-P_{T}^{\prime}\right)^{-1}
$$

$$
\begin{aligned}
& S=I+P_{T} S \\
& S-P_{T} S=I \\
& S\left(I-P_{T}\right)=I \\
& S=\left(I-P_{T}\right)^{-1}
\end{aligned}
$$

* Quantities $s_{i j}, i, j \in T$ can be obtained by inverting the matrix $I-P_{T}$

Example (to do in R): Gambler's Ruin

$$
\begin{aligned}
& P=0.4 \\
& N=7
\end{aligned}
$$

$$
P_{T}=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0.4 & & & & \\
0.6 & 0 & 0.4 & & 0 \\
& 0.6 & 0 & 0.4 & & \\
& & 0.6 & 0 & 0.4 & \\
0 & & 0.6 & 0 & 0.4 \\
& & & & 0.6 & 0
\end{array}\right]
$$

starting with \$3,

- compute the expected amount of time the gambler has \$5
lie. Find $s_{3,5}$ and $s_{3,2}$

For $i, j \in T$,
$f_{i j}=$ probability $M C$ ever transitions into j given that it starts in i

can be computed from $s_{i j}$'s

Key Relation

$$
\begin{aligned}
S_{i j}= & \delta_{i j}+f_{i j} S_{j j} \\
\Rightarrow & f_{i j}=\frac{s_{i j}-\delta_{i j}}{s_{j j}}
\end{aligned}
$$

