STAT 753 Homework 1 SPRING 2020

Due on Thursday February 6 at the beginning of lecture.

- 1. If a fair coin is successively flipped, find the probability that a head first appears on the fifth trial.
- 2. Let the continuous random variables X and Y represent future lifetimes of Alice and Ben, respectively. The PDF of X is $f_X(x) = \alpha e^{-\alpha x}, x > 0$ and the PDF of Y is $f_Y(y) = \beta e^{-\beta y}, y > 0$, where α and β are positive constants. If the variables X and Y are independent, then what is the probability that Alice outlives Ben?
- 3. How large a random sample must be taken from a given distribution in order for the probability to be at least 0.99 that the sample mean will be within 2 standard deviations of the mean of the distribution? [Hint: Use Chebyshev's inequality!]
- 4. Suppose that X is a random variable for which the moment generating function (MGF) is

$$M(t) = \frac{1}{6}(4 + e^{t} + e^{-t}), \quad t \in \mathbb{R}.$$

Determine the probability $P(X \leq 0)$. [Hint: Try to guess the PDF of this distribution, prove that your guess is right, and use the PDF to find the probability].

5. Let Z_1, Z_2, \ldots be a sequence of random variables, and suppose that for $n = 1, 2, \ldots$ the distribution of Z_n is as follows:

$$P(Z_n = n^2) = 1/n, \quad P(Z_n = 0) = 1 - 1/n.$$

Show that $E[Z_n] \to \infty$ and $Z_n \xrightarrow{p} 0$ (in probability) as $n \to \infty$.

- 6. Look up (see probability distribution chart) the moment generating function corresponding to the Poisson distribution with parameter λ , and use it to find the mean and the variance. Further, use the MGF to show that if X_1, \ldots, X_n are independent and X_i has a Poisson distribution with parameter λ_i , then $X = X_1 + \cdots + X_n$ has a Poisson distribution with parameter $\lambda = \lambda_1 + \cdots + \lambda_n$.
- 7. **BONUS:** By using the MGF of Poisson distribution with parameter λ , establish the LLN and the CLT for this distribution. That is, show that \bar{X}_n and Z_n converge in distribution to λ and $Z \sim N(0,1)$, respectively, where \bar{X}_n is the sample mean of X_1, \ldots, X_n and

$$Z_n = \frac{\bar{X}_n - \lambda}{\sqrt{\lambda}/\sqrt{n}}.$$