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A WAITING TIME PROBLEM ARISING FROM THE STUDY
OF MULTI-STAGE CARCINOGENESIS

BY RICK DURRETT,1 DEENA SCHMIDT1,2 AND JASON SCHWEINSBERG3

Cornell University, University of Minnesota and
University of California, San Diego

We consider the population genetics problem: how long does it take be-
fore some member of the population has m specified mutations? The case
m = 2 is relevant to onset of cancer due to the inactivation of both copies of a
tumor suppressor gene. Models for larger m are needed for colon cancer and
other diseases where a sequence of mutations leads to cells with uncontrolled
growth.

1. Introduction. It has long been known that cancer is the end result of sev-
eral mutations that disrupt normal cell division. Armitage and Doll [1] did a statis-
tical analysis of the age of onset of several cancers and fit power laws to estimate
the number of mutations. Knudson [15] discovered that the incidence of retinoblas-
toma (cancer of the retina) grows as a linear function of time in the group of chil-
dren who have multiple cancers in both eyes, but as a slower quadratic function in
children who only have one cancer. Based on this, Knudson proposed the concept
of a tumor suppressor gene. Later it was confirmed that in the first group of chil-
dren, one copy is already inactivated at birth, while in the second group both copies
must be mutated before cancer occurs. Since that time, about 30 tumor suppres-
sor genes have been identified. They have the property that inactivating the first
copy does not cause a change, while inactivating the second increases the cells’
net reproductive rate, which is a step toward cancer.

There is now considerable evidence that colon cancer is the end result of several
mutations. The earliest evidence was statistical. Luebeck and Moolgavakar [18]
fit a four-stage model to the age-specific incidence of colorectal cancers in the
Surveillance, Epidemiology, and End Results registry, which cover 10 percent of
the US population. Calabrese et al. [5] examined 1022 colorectal cancers sampled
from nine large regional hospitals in southeastern Finland. They found support for
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a model with five or six oncogenic mutations in individuals with hereditary risk
factors and seven or eight mutations in patients without.

Over the last decade, a number of studies have been carried out to identify the
molecular pathways involved in the development of colorectal cancer. See Jones
et al. [14] for a recent report. The process is initiated when a single colorectal
cell acquires mutations inactivating the ACP/β-catenin pathway. This results in
the growth of small benign tumor (adenoma). Subsequent mutations in a short list
of other pathways transform the adenoma into a malignant tumor (carcinoma), and
lead to metastasis, the ability of the cancer to spread to other organs.

In this paper, we propose a simple mathematical model for cancer development
in which cancer occurs when one cell accumulates m mutations. Consider a popu-
lation of fixed size N . Readers who are used to the study of the genetics of diploid
organisms may have expected to see 2N here, but our concern is for a collection
of N cells. We choose a model in which the number of cells is fixed because organs
in the body are typically of constant size. We assume that the population evolves
according to the Moran model, which was first proposed by Moran [19]. That is,
each individual lives for an exponentially distributed amount of time with mean
one, and then is replaced by a new individual whose parent is chosen at random
from the N individuals in the population (including the one being replaced). For
more on this model, see Section 3.4 of [11].

In our model, each individual has a type 0 ≤ j ≤ m. Initially, all individuals
have type 0. In the usual population genetics model, mutations only occur at re-
placement events. We assume instead that types are clonally inherited, that is, every
individual has the same type as its parent. However, thinking of a collection of cells
that may acquire mutations due to radiation or other environmental factors, we will
suppose that during their lifetimes, individuals of type j − 1 mutate to type j at
rate uj . We call such a mutation a type j mutation. Let Xj(t) be the number of
type j individuals at time t . For each positive integer m, let τm = inf{t :Xm(t) > 0}
be the first time at which there is an individual in the population of type m. Clearly,
τ1 has the exponential distribution with rate Nu1. Our goal is to compute the as-
ymptotic distribution of τm for m ≥ 2 as N → ∞.

We begin by considering the case m = 2 and discussing previous work. Schi-
nazi [21, 22] has considered related questions. In the first paper, he computes the
probability that in a branching process where individuals have two offspring with
probability p and zero with probability 1 − p, a mutation will arise before the
process dies out. In the second paper, he uses this to investigate the probability
of a type 2 mutation when type 0 cells divide a fixed number of times with the
possibility of mutating to a type 1 cell that begins a binary branching process.

More relevant to our investigation is the work of Komarova, Sengupta and
Nowak [17], Iwasa, Michor and Nowak [13] and Iwasa et al. [12]. Their analysis
begins with the observation that while the number of mutant individuals is o(N),
we can approximate the number of cells with mutations by a branching process
in which each individual gives birth at rate one and dies at rate one. Let Z denote
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the total progeny of such a branching process. Since the embedded discrete time
Markov chain is a simple random walk, we have (see, e.g., page 197 in [7])

P(Z > n) = 2−2n

(
2n

n

)
∼ 1√

πn
.

If we ignore interference between successive new type 1 mutations, then their total
progeny Z1,Z2, . . . are i.i.d. variables in the domain of attraction of a stable law
with index 1/2, so maxi≤M Zi and Z1 + · · · + ZM will be O(M2). Therefore, we
expect to see our first type 2 mutation in the family of the M th type 1 mutation,
where M = O(1/

√
u2). Standard results for simple random walk imply that the

largest of our first M families will have O(M) type 1 individuals alive at the same
time, so for the branching process approximation to hold, we need 1/

√
u2 � N ,

where here and throughout the paper, f (N) � g(N) means that f (N)/g(N) → 0
as N → ∞. Type 1 mutations occur at rate Nu1, so a type 2 mutation will first
occur at a time of order 1/Nu1

√
u2.

As long as the branching process approximation is accurate, the amount of time
we have to wait for a type 1 mutation that will have a type 2 individual as a descen-
dant will be approximately exponential, since mutations occur at times of a Poisson
process with rate Nu1 and the type 1 mutations that lead to a type 2 are a thinning
of that process in which points are kept with probability ∼ √

u2, which is O(1/M),
where here and throughout the paper, f (N) ∼ g(N) means that f (N)/g(N) → 1
as N → ∞. The duration of the longest of M type 1 families is O(M), so the time
between when the type 1 mutation occurs and when the type 2 descendant ap-
pears is O(1/

√
u2). This will be negligible in comparison to 1/Nu1

√
u2 as long

as Nu1 � 1, so the waiting time for the first type 2 individual will also be approx-
imately exponential. This leads to a result stated on pages 231–232 of Nowak’s
book [20] on Evolutionary Dynamics. If 1/

√
u2 � N � 1/u1, then

P(τ2 ≤ t) ≈ 1 − exp
(−Nu1

√
u2t

)
.(1.1)

Figure 1 shows the distribution of τ2 ·Nu1
√

u2 in 10,000 simulations of the Moran
model when N = 103 and u1 = u2 = 10−4. Here, Nu1 = 0.1 and N

√
u2 = 10, so

as the last result predicts, the scaled waiting time is approximately exponential.
We do not refer to the result given in (1.1) as a theorem because their argument

is not completely rigorous. For example, the authors use the branching process
approximation without proving it is valid. However, this is a minor quibble, since
as the reader will see in Section 2, it is straightforward to fill in the missing details
and establish the following more general result.

THEOREM 1. Suppose that Nu1 → λ ∈ [0,∞), u2 → 0 and N
√

u2 → ∞ as
N → ∞. Then τ2 · Nu1

√
u2 converges to a limit that has density function

f2(t) = h(t) exp
(
−

∫ t

0
h(s) ds

)
where h(s) = 1 − e−2s/λ

1 + e−2s/λ
,

if λ > 0 and f2(t) = e−t if λ = 0.
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FIG. 1. Distribution of τ2 · Nu1
√

u2 = 1000 in 10,000 simulations when N = 103 and
u1 = u2 = 10−4. Nu1 = 0.1 and N

√
u2 = 10, so as (1.1) predicts the scaled waiting time is ap-

proximately exponential.

Here, h(t) is the hazard function, that is, if we let F2(t) = exp(− ∫ t
0 h(s) ds) be

the tail of the distribution, then h(t) = f2(t)/F2(t). Figure 2 shows the distribution
of τ2 · Nu1

√
u2 in 10,000 simulations of the Moran model when N = 103, u1 =

10−3 and u2 = 10−4. Nu1 = 1 so the limit is not exponential, but Theorem 1 gives
a good fit to the observed distribution.

Before turning to the case of m mutations, we should clarify one point. In our
model, mutations occur during the lifetime of an individual, but in the following
discussion, we will count births to estimate the probability a desired mutation will
occur. This might seem to only be appropriate if mutations occur at birth. How-
ever, since each individual lives for an exponential amount of time with mean 1,
the number of “man-hours”

∫ T0
0 X1(s) ds before the family dies out at time T0 is

roughly the same as the number of births. In any case, the following discussion is
only a heuristic that helps explain the answer, but does not directly enter into its
proof.

To extend the analysis to the m-stage waiting time problem, suppose M distinct
type 1 mutations have appeared. If the family sizes of these M mutations can
be modeled by independent branching processes, the total number of offspring
of type 1 individuals will be O(M2). Because each type 1 individual mutates to
type 2 at rate u2, there will be O(M2u2) mutations that produce type 2 individuals.
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FIG. 2. Distribution of τ2 ·Nu1
√

u2 = 1000 in 10,000 simulations when N = 103, u1 = 10−3 and
u2 = 10−4. Nu1 = 1 and N

√
u2 = 0.1, so the limit is not exponential, but is fit well by the result in

Theorem 1.

The total progeny of these individuals will consist of O(M4u2
2) type 2 individuals.

We can expect to see our first type 3 individual when M4u2
2 = O(1/u3) or M =

O(u
−1/2
2 u

−1/4
3 ). Thus, for the branching process approximation to hold, we need

u
−1/2
2 u

−1/4
3 � N . Since type 1 mutations occur at rate Nu1, the expected waiting

time will be of order

1/Nu1u
1/2
2 u

1/4
3 .

To help develop a good mental picture, it is instructive to consider the numer-
ical example in which N = 105, u1 = 10−6, u2 = 10−5 and u3 = 10−4. By the
reasoning above, we will first see a type 3 mutation when the number of type 2’s
is of order 100 = 1/

√
u3, since in this case there will be of order 10,000 = 1/u3

type 2 births before the family dies out. To have a type 2 family reach size 100, we
will need 100 mutations from type 1 to type 2, and for this we will need of order
100/u2 = 107 type 1 births, which will in turn occur if the type 1 family reaches
size of order 107/2 ≈ 3162. Note that X2(t) � X1(t) and within the time that the
large type 1 family exists, 100’s of type 2 families will be started and die out. This
difference in the time and size scales for the processes Xi(t) is a complicating
factor in the proof, but ultimately it also allows us to separate the type 1’s from
types 2 to m and use induction.
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Extrapolating the calculation above to m stages, we let

rj,m = u
1/2
j+1u

1/4
j+2 · · ·u1/2m−j

m(1.2)

for 1 ≤ j < m, and set rm,m = 1 and r0,m = u1r1,m. Let qj,m be the probability
a type j individual gives rise to a type m descendant. We will show that qj,m ∼
rj,m, so we will need of order 1/rj,m mutations to type j before time τm.

THEOREM 2. Fix an integer m ≥ 2. Suppose that:

(i) Nu1 → 0.
(ii) For j = 1, . . . ,m − 1, there is a constant bj > 0 such that uj+1/uj > bj

for all N .
(iii) There is an a > 0 so that Naum → 0.
(iv) Nr1,m → ∞.
Then for all t > 0,

lim
N→∞P(τm > t/Nr0,m) = exp(−t).(1.3)

As discussed above, condition (iv) which says 1/r1,m � N is needed for the
branching process assumption to be valid, and condition (i) is needed for the wait-
ing time to be exponential, because if (i) fails then the time between the type 1
mutation that will have a type m descendant and the birth of the type m descendant
cannot be neglected. If uj = μ for all j , (ii) is trivial. In this case r1,m = μa(m),
where a(m) = 1 − 2−(m−1). Conditions (i) and (iv) become N−1/a(m) � μ �
N−1, and when condition (i) is satisfied, (iii) holds.

Conditions (ii) and (iii) are technicalities that allow us to prove the result without
having to suppose that uj ≡ μ, which would not be natural in modeling cancer. In
the presence of (ii), condition (iii) ensures that maxj≤m uj � N−a for some a > 0.
This is natural because even in the late stages of progression to cancer, the per cell
division mutation probabilities are small.

Condition (ii) is motivated by the fact that in most cancers we expect uj to
be increasing in j . The simple extension of this given in (ii) is useful so that we
do not rule out some interesting special cases. In modeling the tumor suppressor
genes mentioned earlier, it is natural to take u1 = 2μ and u2 = μ, that is, at the
first stage a mutation can knock out one of the two copies of the gene, but after this
occurs, there is only one copy subject to mutation. A case with u1/u2 = 30 occurs
in Durrett and Schmidt’s study of regulatory sequence evolution [9].

Condition (iv) ensures that an individual of type m will appear before any type 1
mutation achieves fixation. In the case m = 2, Iwasa et al. [13] called this stochas-
tic tunneling. A given type 1 mutation fixates with probability 1/N and type 1
mutations occur at rate approximately Nu1, so fixation occurs before a type m

individual appears if Nr1,m → 0, and then once a type 1 mutation fixates, the
problem reduces to the problem of waiting for m − 1 additional mutations. In the
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borderline case considered in the next result, either a type m individual could ap-
pear before fixation, or a type m mutation could be achieved through the fixation
of type 1 individuals followed by the generation of an individual with m − 1 addi-
tional mutations.

THEOREM 3. Fix an integer m ≥ 2. Assume conditions (i), (ii) and (iii) from
Theorem 2 hold. If (Nr1,m)2 → γ > 0, and we let

α =
∞∑

k=1

γ k

(k − 1)!(k − 1)!
/ ∞∑

k=1

γ k

k!(k − 1)! > 1,(1.4)

then for all t > 0, limN→∞ P(u1τm > t) = exp(−αt).

Figure 3 shows the distribution of u1τ2 in 10,000 simulations of the Moran
model when N = 103, u1 = 10−4 and u2 = 10−6. Nu1 = 0.1 and N

√
u2 = 1,

so the assumptions of Theorem 3 hold with γ = 1. Numerically evaluating the
constant gives α = 1.433 and as the figure shows the exponential with this rate
gives a reasonable fit to the simulated data.

FIG. 3. Distribution of u1τ2 when N = 103, u1 = 10−4 and u2 = 10−6. Nu1 = 0.1 and
N

√
u2 = 1 so we are in the regime covered by Theorem 3. The constant γ = 1 so α = 1.433. As

the graph shows the exponential distribution with rate α gives a reasonbly good fit to the simulated
data.
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Theorem 3 will be proved by reducing the general case to a two-type model
with ū1 = u1 and ū2 = u2q2,m ∼ r2

1,m. We will show that it suffices to do calcu-
lations for a model in which type 1 mutations are not allowed when the number
of type 1 individuals X1(t) is positive. In this case, if we start with X1(0) = Nε

then N−1X1(Nt) → Zt where Zt is the Wright–Fisher diffusion process with in-
finitesimal generator x(1 − x)d2/dx2. When X1(Nt) = Nx, mutations to type 2
that eventually lead to a type m individual occur at rate approximately

N · Nx · u2q2,m ∼ N2r2
1,mx → γ x,

so, if we let u(x) be the probability that the process Zt hits 0 before reaching 1 or
generating a type m mutation, then u(x) satisfies

x(1 − x)u′′(x) − γ xu(x) = 0, u(0) = 1, u(1) = 0.(1.5)

The constant α = limε→0(1 − u(ε))/ε. Its relevance for the problem is that start-
ing from a single type 1 individual, the probability of reaching N or generating
a type m mutation is ∼α/N . Since mutations to type 1 occur at rate ∼ Nu1, the
waiting time is roughly exponential with rate u1α.

One can check (see Lemma 6.9 below) that (1.5) can be solved by the following
power series around x = 1:

u(x) = c

∞∑
k=1

γ k

k!(k − 1)!(1 − x)k.(1.6)

Picking c so that u(0) = 1, it follows that α has the form given in (1.4). Another ap-
proach to solving (1.5) is to use the Feynman–Kac formula; see formula (3.19.5b)
on page 225 of [4].

We do not discuss in this paper the case Nu1 → ∞. We instead refer the reader
to [23], where asymptotic results in this regime are obtained in the special case
when uj = μ for all j .

The rest of this paper is organized as follows. In Section 2, we give the proof of
Theorem 1. In Section 3, we collect some results for a two-type population model
that will be useful later in the paper. In Section 4, we calculate by induction the
probability that a given type 1 individual has a type m descendant. In Section 5,
we combine this result with a Poisson approximation result of Arratia, Goldstein
and Gordon [2] to prove Theorem 2. Theorem 3 is proved in Sections 6 and 7.
Throughout our proofs, C denotes a constant whose value is unimportant and will
change from line to line.

2. Proof of Theorem 1. If we let X1(t) be the number of type 1 individuals
at time t then

P(τ2 > t) = E exp
(
−u2

∫ t

0
X1(s) ds

)
,(2.1)
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because at time s, there are X1(s) individuals each experiencing type 2 mutations
at rate u2. We will compare X1(t) with a continuous-time branching process with
immigration, Y(t). When X1(t) = k, type 1 mutations occur at rate (N − k)u1,
while birth events in which a type 1 individual replaces a type 0 individual occur
at rate k(N − k)/N , so before time τ2, we have jumps

k → k + 1 at rate (k + Nu1) · N − k

N
,

k → k − 1 at rate k · N − k

N
.

In the branching process with immigration, Y(t), we have jumps

k → k + 1 at rate k + Nu1,

k → k − 1 at rate k.

Therefore, up to time τ2, the process {X1(t), t ≥ 0} is a time-change of
{Y (t), t ≥ 0}, in which time runs slower than in the branching process by a fac-
tor of (N − X1(t))/N . That is, if

T (t) =
∫ t

0

N − X1(s)

N
ds ≤ t,

then the two processes can be coupled so that X1(t) = Y(T (t)), for all t ≥ 0.
The time change will have little effect as long as X1(t) is o(N). The next lemma
shows that on the relevant time scale, the number of mutants stays small with high
probability.

LEMMA 2.1. Fix t > 0, ε > 0, and let Mt = max0≤s≤t/(Nu1
√

u2) X1(s). We
have

lim
N→∞P(Mt > εN) = 0.

PROOF. Since mutant individuals give birth and die at the same rate, the
process {X1(s), s ≥ 0} is a submartingale. Because the rate of type 1 mutations
is always bounded above by Nu1, we have EX1(s) ≤ Nu1s for all s. By Doob’s
maximal inequality,

P(Mt > εN) ≤ EX1(t/Nu1
√

u2)

εN
≤ t

εN
√

u2
,

which goes to zero as N → ∞, since N
√

u2 → ∞. �

Using the time change in (2.1), we have

P
(
τ2 > t/Nu1

√
u2

) = E exp
(
−u2

∫ t/Nu1
√

u2

0
Y(T (s)) ds

)
.
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Changing variables r = T (s), which means s = U(r), where U = T −1, ds =
U ′(r) dr and the above is

P
(
τ2 > t/Nu1

√
u2

) = E exp
(
−u2

∫ T (t/Nu1
√

u2)

0
Y(r)U ′(r) dr

)
.

When Mt ≤ Nε, 1 ≥ T ′(t) ≥ 1 − ε, so the inverse function has slope 1 ≤ U ′(r) ≤
1/(1 − ε). Thus, in view of Lemma 2.1, it is enough to prove the result for the
branching process, Y(t).

Use Q to denote the distribution of {Y (t), t ≥ 0}, and let Q1 denote the law of
the process starting from a single type 1 and modified to have no further mutations
to type 1. We first compute g2(t) = Q1(τ2 ≤ t). Wodarz and Komarova [24] do
this, see pages 37–39, by using Kolmogorov’s forward equation to get a partial
differential equation

∂φ

∂t
(t, y) = (

y2 − (2 + u2)y + 1
)∂φ

∂y
(t, y)

for the generating function φ(t, y) = ∑
j Q1(X1(t) = j,X2(t) = 0)yj of the sys-

tem in which type 2’s are not allowed to give birth or die. They use the method
of characteristics to reduce the PDE to a Riccati ordinary differential equation. To
help readers who want to follow their derivation, we note that the last equation on
page 38 is missing a factor of j in the last term and in the change of variables
from y to z on page 39, 2 should be r .

Here, we will use Kolmogorov’s backward differential equation to derive an
ODE, which has the advantage that it generalizes easily to the m stage problem.
By considering what happens between time 0 and h,

g2(t + h) = g2(t)[1 − (2 + u2)h] + h[2g2(t) − g2(t)
2] + h · 0 + u2h · 1 + o(h),

where the four terms correspond to nothing happening, a birth, a death and a mu-
tation of the original type 1 to type 2. Doing some algebra and letting h → 0

g′
2(t) = −u2g2(t) − g2(t)

2 + u2.(2.2)

If we let r1 > r2 be the solutions of x2 + u2x − u2 = 0, that is,

ri = −u2 ±
√

u2
2 + 4u2

2
,(2.3)

we can write this as

g′
2(t) = −(

g2(t) − r1
)(

g2(t) − r2
)
.

Now g2(∞) be the probability that a type 2 offspring is eventually generated in
the branching process. Letting t → ∞ in (2.2) and noticing that t → g2(t) is in-
creasing implies g′

2(t) → 0, we see that

0 = −u2g2(∞) − g2(∞)2 + u2,



686 R. DURRETT, D. SCHMIDT AND J. SCHWEINSBERG

so 0 ≤ g2(t) < r1 for all t and we have

1 = g′
2(t)

(r1 − g2(t))(g2(t) − r2)
= 1

r1 − r2

(
g′

2(t)

g2(t) − r2
+ g′

2(t)

r1 − g2(t)

)
.

Integrating

ln
(
g2(t) − r2

) − ln
(
r1 − g2(t)

) = (r1 − r2)t − lnA,

where A is a constant that will be chosen later, so we have

g2(t) − r2

r1 − g2(t)
= (1/A)e(r1−r2)t .

A little algebra gives

g2(t) = r1 + Ar2e
(r2−r1)t

1 + Ae(r2−r1)t
.

We have g2(0) = 0, so A = −r1/r2 and

g2(t) = r1(1 − e(r2−r1)t )

1 − (r1/r2)e(r2−r1)t
.

To prepare for the asymptotics note that (2.3) and the assumption that u2 → 0

imply that r1 − r2 =
√

u2
2 + 4u2 ∼ 2

√
u2, r1 ∼ √

u2 and r1/r2 → −1 so

g2(t) ≈
√

u2(1 − e−2
√

u2t )

1 + e−2
√

u2t

or to be precise, if t
√

u2 → s, then

g2(t) ∼ √
u2 · 1 − e−2s

1 + e−2s
.(2.4)

LEMMA 2.2. The waiting time for the first type 2 in the branching process
with immigration when each type 1 individual experiences mutations at rate Nu1
satisfies

Q(τ2 ≤ t) = 1 − exp
(
−Nu1

∫ t

0
Q1(τ2 ≤ s) ds

)
.(2.5)

PROOF. Type 1 mutations are a Poisson process with rate Nu1. A point at
time t − s is a success, that is, produces a type 2 before time t with probability
Q1(τ2 ≤ s). By results for thinning a Poisson process, the number of successes
by time t is Poisson with mean Nu1

∫ t
0 Q1(τ2 ≤ s) ds. The result follows from the

observation that Q(τ2 ≤ t) is the probability of at least one success in the Poisson
process. �
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To find the density function, we recall g2(t) = Q1(τ2 ≤ t) and differentiate to
get

Nu1g2(t) exp
(
−Nu1

∫ t

0
g2(s) ds

)
.

Changing variables the density function f2 of τ2 · Nu1
√

u2 is given by

f2(t) = g2(t/Nu1
√

u2)√
u2

exp
(
−Nu1

∫ t/Nu1
√

u2

0
g2(s) ds

)
.

Changing variables r = sNu1
√

u2 in the integral the above is

f2(t) = g2(t/Nu1
√

u2)√
u2

exp
(
−

∫ t

0

g2(r/Nu1
√

u2)√
u2

dr

)
.

If Nu1 → 0, then (2.4) implies that the above converges to exp(−t). If Nu1 → λ,

the limit is h(t) exp(− ∫ t
0 h(s) ds) where

h(s) = 1 − e−2s/λ

1 + e−2s/λ
,

which completes the proof of Theorem 1.

3. A two-type model. We collect here some results for a simple two-type
population model, which we call model M0. We assume that all individuals are
either type 0 or type 1, and the population size is always N . There are no mu-
tations, and the population evolves according to the Moran model, so each indi-
vidual dies at rate 1 and then is replaced by a randomly chosen individual in the
population. Usually we will assume that the process starts with just one type 1
individual at time zero, but occasionally we will also need to consider starting the
process with j type 1 individuals. Denote by Pj and Ej probabilities and expecta-
tions when the process is started with j type 1 individuals, and write P = P1 and
E = E1. Let X(t) denote the number of type 1 individuals at time t .

Let Tk = inf{t :X(t) = k} be the first time at which there are k type 1 individ-
uals, and let T = min{T0, TN } be the first time at which all individuals have the
same type. Let Lk be the amount of time for which there are k type one individ-
uals, which is the Lebesgue measure of {t < T :X(t) = k}. Let Rk be the number
of times that the number of type 1 individuals jumps to k from k − 1 or k + 1. Let
R = 1 + ∑N−1

k=1 Rk be the total number of births and deaths of type 1 individuals.
Durrett and Schmidt [8] studied this model and showed that

E[Rk|T0 < TN ] = 2(N − k)2

N(N − 1)
(3.1)

and

E[Rk|TN < T0] = 2k(N − k)

N
.(3.2)
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Equation (3.1) is (16) of [8], while (3.2) comes from the beginning of the proof of
Lemma 3 in [8].

Because P(TN < T0) = 1/N , it follows from (3.1) and (3.2) that

E[Rk] = (N − 1)E[Rk|T0 < TN ] + E[Rk|TN < T0]
N

= 2(N − k)

N
≤ 2(3.3)

and, therefore,

E[R] = 1 +
N−1∑
k=1

E[Rk] ≤ 2N.(3.4)

If 1 ≤ j ≤ N − 1, then letting A denote the event that there are at least j type 1
individuals at some time, (3.4) gives

Ej [R] = Ej [R1A] ≤ E[R1A]
P(A)

= jE[R1A] ≤ jE[R] ≤ 2jN.(3.5)

Turning to the quantities Lk , note that when there are k type 1 individuals, births
and deaths are each happening at rate k(N −k)/N , so the number of type 1 individ-
uals changes again after an exponential time with mean N/[2k(N −k)]. Therefore,
(3.3) gives

E[Lk] = N

2k(N − k)
E[Rk] = 1

k
.(3.6)

Since Pj (Tk < T0) = j/k for 1 ≤ j < N , we have

Ej [Lk] ≤ E1[Lk|Tk < T0] = E1[Lk]
P1(Tk < T0)

= 1,(3.7)

where to emphasize the change in initial condition, we have written E as E1. Since
T = ∑N−1

k=1 Lk , it also follows from (3.6) that

E[T ] =
N−1∑
k=1

1

k
≤ C logN(3.8)

and it follows from (3.7) that for j = 1, . . . ,N − 1,

Ej [T ] ≤ N.(3.9)

Finally, we will use branching process theory to obtain the following complement
to (3.8).

LEMMA 3.1. There exists a constant C such that P(T > t) ≤ C/t for all
0 ≤ t ≤ N .
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PROOF. Consider a continuous-time branching process started with one indi-
vidual in which each individual dies at rate one and gives birth at rate one. Let T ′ be
the time at which the process becomes extinct. By a theorem of Kolmogorov [16],
proved in Section I.9 of [3], and the fact that a Markovian continuous-time
branching process can be reduced to a discrete time Galton–Watson process by
only examining it at integer times, we see that there is a constant C′ such that
P(T ′ > t) ≤ C′/t for all t ≥ 0.

When there are k individuals in the branching process, births and deaths happen
at rate k. When there are k individuals in the model M0, births and deaths happen
at rate k(N −k)/N , which is at least k/2 as long as k ≤ N/2. Since the probability
that the number of individuals in model M0 ever exceeds N/2 is at most 2/N , we
have P(T > t) ≤ 2C′/t + 2/N for all t , which implies the result. �

4. The probability of a type m descendant. We now consider model M1,
which evolves in the same way as the process described in the Introduction ex-
cept that initially there is one type 1 individual and N − 1 type 0 individuals,
and no further type 1 mutations occur. The number of individuals of nonzero type
in model M1 therefore evolves exactly like the number of type 1 individuals in
model M0, defined at the beginning of the previous section, but in model M1 mu-
tations to types greater than one are possible. The probability, which we denote
by qm, that a type m individual is eventually born in model M1 is the same as
the probability that a given type one individual in the process described in the In-
troduction has a type m descendant. Our main goal in this section is to prove the
following result.

PROPOSITION 4.1. Fix an integer m ≥ 2. Assume conditions (ii), (iii) and (iv)
of Theorem 2 hold. Then qm ∼ r1,m.

We will use Proposition 4.1 to prove Theorem 2. To prove Theorem 3, we will
need the following corollary. Here we denote by qj,m the probability that a type m

individual eventually appears in a process with initially one type j individual,
N − 1 type 0 individuals, and mutations to type 1 are not allowed.

COROLLARY 4.1. Fix an integer m ≥ 2. Assume conditions (ii) and (iii) of
Theorem 2 hold and that (Nr1,m)2 → γ > 0. Then q2,m ∼ r2,m.

PROOF. We apply the m − 1 case of Proposition 4.1, with u3, . . . , um in place
of u2, . . . , um−1. Since we are assuming (ii) and (iii), we need only to show that
Nr2,m → ∞. However, (ii) and (iii) imply

Nr2,m

Nr1,m

= u
1/2
3 u

1/4
4 · · ·u1/2m−2

m

u
1/2
2 u

1/4
3 · · ·u1/2m−2

m−1 u
1/2m−1

m

> b
1/2
2 b

1/4
3 · · ·b1/2m−2

m−1 u−1/2m−1

m → ∞.
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This result and the assumption (Nr1,m)2 → γ > 0 imply Nr2,m → ∞. �

We will prove Proposition 4.1 using a branching process approximation. We
will approximate model M1 by a continuous-time multi-type branching process in
which individuals of type 1 ≤ j < m die at rate 1, give birth at rate 1 and mutate
to individuals of type j + 1 at rate uj+1. Let pj,m be the probability that a type j

individual eventually has a descendant of type m in the branching process and let
pm = p1,m.

LEMMA 4.1. If conditions (ii) and (iii) of Theorem 2 hold, then pj,m ∼ rj,m.

PROOF. We proceed by induction starting at j = m and working down to
j = 1. Clearly, pm,m = 1, so the result is valid for j = m. Now assume the re-
sult is true for j + 1. By conditioning on the first event in the branching process, it
follows that

pj,m = 1

2 + uj+1
(2pj,m − p2

j,m) + uj+1

2 + uj+1
pj+1,m.

Multiplying by 2+uj+1 and rearranging, we get p2
j,m +bpj,m −uj+1pj+1,m = 0,

where b = uj+1. The only positive solution is

pj,m = −b +
√

b2 + 4uj+1pj+1,m

2
.(4.1)

Calculus tells that for h > 0

√
x + h − √

x =
∫ x+h

x

1

2
√

y
dy ≤ h

2
√

x
,

so, we have

2
√

uj+1pj+1,m ≤
√

4uj+1pj+1,m + b2

(4.2)

≤ 2
√

uj+1pj+1,m + b2

4
√

uj+1pj+1,m

.

Conditions (ii) and (iii) imply that uj+1 � rj+1,m and, therefore, that√
uj+1rj+1,m � b = uj+1. Since pj+1,m ∼ rj+1,m by the induction hypothesis,

it follows from (4.1) and (4.2) that pj,m ∼ √
uj+1rj+1,m. The lemma follows by

induction. �

REMARK. One gets the same result for a number of other variants of the
model. We leave it to the reader to check that Lemma 4.1 holds when mutation
only occurs at birth. To prepare for the proof of Lemma 4.7, we will now show
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that it holds when type j ’s give birth to type j ’s at rate one and to type j + 1’s at
rate uj+1. In this case, the first equation is

pj,m = 1

2 + uj+1
(2pj,m − p2

j,m) + uj+1

2 + uj+1
(pj,m + pj+1,m − pj,mpj+1,m)

and rearranges to become p2
j,m +uj+1pj+1,mpj,m −uj+1pj+1,m = 0. Taking b =

uj+1pj+1,m, the proof goes as before.

We will now prove Proposition 4.1 by induction. We begin with the case m = 2,
in which the comparison with the branching process is straightforward.

LEMMA 4.2. Under the assumptions of Proposition 4.1 with m = 2, we have
q2 ∼ r1,2 = u

1/2
2 .

PROOF. If we track the number of type 1 individuals in model M1 before the
first type 2 mutation occurs, upward and downward jumps occur at the same rate,
which if there are k type 1 individuals is k(N − k)/N . For the branching process,
when there are k type 1 individuals, upward and downward jumps occur at rate k.
Therefore, the embedded jump chain (which gives the sequence of states visited
by the continuous-time chain) is a simple random walk Sn with S0 = 1 both for
model M1 and for the branching process. Therefore, writing p2 as a function of
the underlying mutation rate, we claim that for any L,

p2(u2) − 1/N ≤ q2 ≤ p2
(
u2N/(N − L)

) + 1/L.(4.3)

The first inequality follows from the fact that unless the number of type 1 indi-
viduals in model M1 reaches N , which happens with probability 1/N , model M1
has the same embedded jump chain as the branching process and jumps more
slowly. For the second inequality, we note that the probability the Moran model
reaches height L is 1/L. When this does not occur, the Moran model always
jumps at rate at least (N − L)/N times the branching process rate. Lemma 4.1
gives p2(u2) ∼ u

1/2
2 . Condition (iv) gives Nu

1/2
2 → ∞, so we can choose L

such that L/N → 0 and Lu
1/2
2 → ∞. Under these conditions, (4.3) implies q2 ∼

u
1/2
2 . �

For the rest of this section, we will fix m and assume that the assumptions of
Proposition 4.1 hold. We will also assume that Proposition 4.1 has been established
for m − 1, which implies that q2,m ∼ r2,m. We will reduce the general case to the
m = 2 case in which type 2 mutations occur at rate u2r2,m. The next two lemmas
will allow us to ignore certain type 2 mutations.

LEMMA 4.3. Let Am be the event that in model M1 some type 2 mutation that
occurs while there is another individual in the population of type 2 or higher has
a type m descendant. Then P(Am) � r1,m.
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PROOF. Let ε > 0. Let B be the event that the number of individuals in
the population of type 1 or higher never exceeds ε−1r−1

1,m, so P(Bc) ≤ εr1,m.
Let U = {t : there is an individual of type 2 or higher alive at time t}. On B , type 2
mutations occur at rate at most ε−1r−1

1,mu2 and have a type m descendant with prob-
ability q2,m. Therefore, letting |U | denote the Lebesgue measure of U , we have

P(Am) ≤ εr1,m + E[|U |1B ]ε−1r−1
1,mu2q2,m.

For k ≤ ε−1r−1
1,m, it follows from (3.6) that the expected amount of time for which

there are k individuals of type 1 or higher is 1/k, and so the expected number
of type 2 mutations during this time is at most (1/k)(ku2) = u2. Therefore, the
expected number of type 2 mutations while there are at most ε−1r−1

1,m individuals

of type 1 or higher is at most ε−1r−1
1,mu2. By (3.8), the expected amount of time

for which these mutations or their offspring are alive in the population is at most
(C logN)ε−1r−1

1,mu2. Therefore, E[|U |1B ] ≤ (C logN)ε−1r−1
1,mu2. Since q2,m ∼

r2,m by the induction hypothesis and u2r2,m = r2
1,m, it follows that there exists a

constant C such that

P(Am) ≤ εr1,m + C(logN)ε−2r−2
1,mu2

2r2,m = εr1,m + C(logN)ε−2u2.

Conditions (ii) and (iii) imply that there exist constants C1 and C2 such that

(logN)u2

r1,m

≤ C1u
1/2m−1

2 logN ≤ C2u
1/2m−1

m logN → 0.

It follows that

lim sup
N→∞

r−1
1,mP (Am) ≤ ε,

which implies the lemma. �

LEMMA 4.4. Let ε > 0. Let Bm be the event that in model M1 some type 2
mutation that occurs while there are fewer than εr−1

1,m individuals in the population
of type 1 or higher has a type m descendant. Then there is a constant C, not
depending on ε, such that P(Bm) ≤ Cεr1,m.

PROOF. As noted in the proof of Lemma 4.3, the expected number of type 2
mutations while there are k individuals of type 1 or higher is u2. Therefore, the
expected number of type 2 mutations while there are fewer than εr−1

1,m individuals

of type 1 or higher is at most εr−1
1,mu2. By the induction hypothesis, each such mu-

tation produces a type m descendant with probability qm ∼ r2,m, so the probability
that one of these mutations produces a type 2 descendant is at most Cεr−1

1,mr2,mu2.
The desired result now follows from the fact that u2r2,m = r2

1,m. �

Our strategy is to show that we can reduce the problem to the m = 2 case by
assuming that each type 2 mutation independently generates a type m descendant
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with probability q2,m. Complicating this picture is the fact that the evolution of the
number of type 1 individuals (which produce the type 2 mutations) is not inde-
pendent of the success of the type 2 mutations because a new individual of type
j ≥ 2 may replace an existing type 1 individual and vice versa. To show that this is
not a significant problem, we will construct a coupling of model M1 with another
process in which this dependence has been eliminated. We first define model M2
to evolve like model M1 except that initially there are k individuals of type 1 and
N − k of type 0, and type 2 mutations are only permitted when there are no in-
dividuals of type j ≥ 2. We then compare model M2 to model N2, in which the
type 1 individuals are decoupled from type 2 individuals and their offspring by
declaring that (provided a type 0 individual exists):

• if a proposed move exchanges a type 1 and a type j ≥ 2, we instead exchange
a type 0 and a type j ;

• a mutation that occurs to a type 1 produces a new type 2 individual but replaces
a type 0 individual instead of the type 1 that mutated.

To define the coupling precisely, introduce a Poisson process with rate N at
which the successive exchanges will occur and let in and jn be independent i.i.d.
uniform on {1,2, . . . ,N}. In both models, we replace individual in with a copy
of individual jn. In model N2, if in has type 1 and jn has type 2 or higher, then
we choose a type 0 individual at random to become type 1, so that the number of
type 1 individuals stays the same. Likewise, if in has type 2 or higher and jn has
type 1, then we choose a type 1 individual to become type 0 in model N2. This
recipe breaks down when there are no individuals of type 0. However, Lemma 4.5
shows that with high probability the number of individuals of nonzero type is o(N)

up to time τm. For the mutations, we have for each 1 ≤ i ≤ N a Poisson process
with rate u2, which in both models causes a mutation of the ith individual, unless
either the ith individual has type 0 or the ith individual has type 1 and there is an
individual of type 2 or higher in the population. In model N2, if a type 1 individual
mutates to type 2, a type 0 individual is chosen at random to become type 1, to
keep the number of type 1 individuals constant.

Let X1(t) and Y1(t) be the number of type 1 individuals at time t in models M2
and N2, respectively. Let Z(t) = X1(t)−Y1(t). Let X̂2(t) and Ŷ2(t) be the number
of individuals in models M2 and N2, respectively, of type greater than or equal
to 2. Note that by renumbering the individuals as the process evolves if necessary,
we can ensure that for all t ≥ 0, at time t there are min{X1(t), Y1(t)} integers j

such that the j th individual has type 1 in both model M2 and model N2. Note
also that with the above coupling, if a type 2 mutation occurs at the same time in
both models, descendants of this mutation will always have the same type in both
models. This means that if the mutation has a type m descendant in one model,
then it will have a type m descendant in the other. Finally, as long as the number
of individuals of nonzero type stays below N/2, we can also ensure that there is
no j such that the j th individual has type 1 in one of the two models and type 2
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or higher in the other. The lemma below, combined with condition (iv), ensures
that in both models, the number of individuals of nonzero type stays much smaller
than N .

LEMMA 4.5. Fix t > 0. Suppose X1(0) = Y1(0) = [εr−1
1,m] and X̂2(0) =

Ŷ2(0) = 0. Assume f is a function of N such that f (N)r1,m → ∞ as N → ∞.
Then using →p to denote convergence in probability, we have

max
0≤s≤tr−1

1,m

X1(s) + X̂2(s)

f (N)
→p 0 and max

0≤s≤tr−1
1,m

Y1(s) + Ŷ2(s)

f (N)
→p 0.

PROOF. In model M2, individuals of type 1 or higher give birth and die at the
same rate, so (X1(s) + X̂2(s), s ≥ 0) is a martingale and

E[X1(tr
−1
1,m) + X̂2(tr

−1
1,m)] = X1(0) + X̂2(0) = [εr−1

1,m].
By Doob’s maximal inequality, if δ > 0, then

P

(
max

0≤s≤tr−1
1,m

X1(s) + X̂2(s)

f (N)
> δ

)
≤ E[X1(tr

−1
1,m) + X̂2(tr

−1
1,m)]

δf (N)

≤ εr−1
1,m

δf (N)
→ 0

as N → ∞, which implies the first statement of the lemma.
In model N2, mutations of type 1 individuals cause new type 2 individuals to

replace type 0 individuals. Births and deaths occur at the same rate, so the process
(Y1(s), s ≥ 0) is a martingale, while (Y1(s) + Ŷ2(s), s ≥ 0) is a submartingale.
Now E[Y1(s)] = [εr−1

1,m] for all s, so the expected number of type 2 individuals

that appear before time tr−1
1,m because of mutation is at most εr1,m · tr−1

1,m · u2 =
εu2r

−2
1,mt . It follows that

E[Y1(tr
−1
1,m) + Ŷ2(tr

−1
1,m)] ≤ εr−1

1,m + εu2r
−2
1,mt.

Now

u2r
−1
1,m = u2

u
1/2
2 u

1/4
2 · · ·u1/2m−1

m

= u
1−1/2m−1

2

u
1/2
2 u

1/4
2 · · ·u1/2m−1

m

· u1/2m−1

2 → 0,(4.4)

because condition (ii) implies that the first factor is bounded by a constant, so
Doob’s maximal inequality this time gives

P

(
max

0≤s≤tr−1
1,m

Y1(s) + Ŷ2(s)

f (N)
> δ

)
≤ εr−1

1,m + εu2r
−2
1,mt

δf (N)
→ 0,
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which implies the second half of the lemma. �

We now work on bounding the process (Z(t), t ≥ 0). There are three types
of events that cause this process to jump. First, whenever a type 1 individual in
model M2 mutates to type 2, there is no corresponding change in model N2, be-
cause any new type 2 individual in model N2 resulting from mutation replaces a
type 0. These changes cause the Z process to decrease by one. Letting μ(t) be the
rate at which they are occurring at time t , we have

0 ≤ μ(t) ≤ u2X1(t),

where the second inequality could be strict because mutations are suppressed if
there is already a type 2 individual in the population.

Second, one of the “extra” |Z(t)| type 1 individuals in one process or the other
could experience a birth or a death. This could cause the Z process to increase
or decrease by one. If X1(t) > Y1(t), then at time t , both increases and decreases
in the Z process occur because of such changes at rate |Z(t)|(N − |Z(t)|)/N ,
because the Z process changes unless the other individual involved in the ex-
change was also one of the |Z(t)| individuals that are type 1 in model M2 but
not model N2. If Y1(t) > X1(t), then increases and decreases in the Z process
occur at rate |Z(t)|(N − |Z(t)| − Ŷ2(t))/N because exchanges between a type 1
individual and an individual of type 2 or higher are prohibited in model N2.

Finally, there are transitions in which one of the min{X1(t), Y1(t)} individuals
that are type 1 in both processes experiences a birth or death, but the other indi-
vidual involved in the exchange is one of the Ŷ2(t) individuals that has type 2 in
model N2, so the type 1 population does not change in model N2. Such changes
occur at rate Ŷ2(t)min{X1(t), Y1(t)}/N .

Thus, if we let

λ(t) = |Z(t)|(N − |Z(t)| − Ŷ2(t)1{Y1(t)>Z1(t)})
N

+ Ŷ2(t)min{X1(t), Y1(t)}
N

,

then at time t the Z process is increasing by 1 at rate λ(t) and decreasing by 1 at
rate λ(t) + μ(t). The next result uses these facts to control the difference between
X1(t) and Y1(t).

LEMMA 4.6. Fix t > 0. Let ZN(s) = r1,mZ(sr−1
1,m) for all s ≥ 0. If X1(0) =

Y1(0) = εr−1
1,m and X̂2(0) = Ŷ2(0) = 0, then

max
0≤s≤t

ZN(s) →p 0.

PROOF. We will use Theorem 4.1 from Chapter 7 in [10] to show that ZN

converges to a diffusion with b(x) = 0, a(x) = 2|x|, and initial point 0, so the
limit is identically zero. The first step is to observe that the Yamada–Watanabe
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theorem; see, for example, (3.3) on page 193 of [6], gives pathwise uniqueness for
the limiting SDE, which in turn implies that the martingale problem is well posed.
To verify the other assumptions of the theorem, define

BN(t) = −
∫ t

0
μ(sr−1

1,m) ds

and

AN(t) =
∫ t

0
r1,m

(
2λ(sr−1

1,m) + μ(sr−1
1,m)

)
ds.

In view of the transition rates for the process (Z(t), t ≥ 0), we see that at time s the
process ZN(s) experiences positive jumps by the amount r1,m at rate λ(sr−1

1,m)r−1
1,m

and negative jumps by the same amount at rate (λ(sr−1
1,m) + μ(sr1,m))r−1

1,m. There-
fore, letting MN(t) = ZN(t)−BN(t), the processes (MN(t), t ≥ 0) and (M2

N(t)−
AN(t), t ≥ 0) are martingales. To obtain the result of the lemma from Theorem 4.1
in Chapter 7 of [10], it remains to show that for any fixed T > 0, we have

sup
0≤t≤T

|BN(t)| →p 0(4.5)

and

sup
0≤t≤T

∣∣∣∣AN(t) −
∫ t

0
2|ZN(s)|ds

∣∣∣∣ →p 0.(4.6)

To prove (4.5), note that

sup
0≤t≤T

|BN(t)| ≤ T sup
0≤t≤T

μ(tr−1
1,m) ≤ T u2 max

0≤t≤T r−1
1,m

X1(t).

Since r1,m/(T u2) → ∞ by (4.4), (4.5) now follows from Lemma 4.5 with f (N) =
1/(T u2). For (4.6), note that

AN(t) −
∫ t

0
2|ZN(s)|ds

= r1,m

∫ t

0

(
−2|Z(sr−1

1,m)|2
N

−
2|Z(sr−1

1,m)|Ŷ2(sr
−1
1,m)1{Y1(sr

−1
1,m)>Z1(sr

−1
1,m)}

N

+ 2Ŷ2(sr
−1
1,m)min{X1(sr

−1
1,m), Y1(sr

−1
1,m)}

N
+ μ(sr−1

1,m)

)
ds.

It suffices to control the absolute values of the four terms over all t ≤ T .
Note that Z(sr−1

1,m) ≤ max{X1(sr
−1
1,m), Y1(sr

−1
1,m)}. Therefore, by Lemma 4.5

with f (N) = √
N/r1,m, the three quantities max0≤s≤T r−1

1,m
r

1/2
1,mN−1/2|Z(s)|,

max0≤s≤T r−1
1,m

r
1/2
1,mN−1/2Ŷ2(s) and max0≤s≤T r−1

1,m
r

1/2
1,mN−1/2X1(s) all converge in

probability to zero as N → ∞. This is enough to establish the convergence of the



WAITING TIMES FOR MUTATIONS 697

first three terms. The result for the third term follows from (4.5) and the fact that
r1,m → 0. �

In the model N2, types j ≥ 2 have the same relationship to type 1 individuals
as in the branching process. That is, type 1’s give birth to type 2’s, but the fate of a
type 2 family does not affect the number of type 1 individuals because a type 1 indi-
vidual cannot be exchanged with an individual of type 2 or higher. Lemma 4.3 has
shown that we can ignore type 2 births that occur when another type 2 is present,
so successive type 2 births give independent chances of producing a type m indi-
vidual. We are now close to our goal announced in the Introduction of reducing the
m-type problem to the 2-type problem with ū2 = u2q2,m, that is, to the simplified
model in which at each type 2 mutation, we flip a coin with probability q2,m of
heads to see if it will generate a type m individual.

Let model N ′
2 be model N2 modified so that if a type 2 mutation occurs when

Ŷ2(t) > 0, instead of suppressing this event entirely, we flip a coin with probability
q2,m of heads. We then add a type m individual to the population if the coin is heads
and otherwise make no change. Lemma 4.3 implies that the difference between
the probability of getting a type m individual in model N2 and the probability of
getting a type m individual in model N ′

2 tends to zero as N → ∞. However, it is
easier to prove the next result using model N ′

2 because in model N ′
2, each type 1

individual is giving rise to individuals that will produce a type m descendant at
rate u2q2,m, regardless of whether there are other individuals in the population of
type 2 or higher.

LEMMA 4.7. Let ε > 0. Consider model N ′
2 starting from [εr−1

1,m] type 1 indi-

viduals at time zero. Let h1
N,m,ε be the probability that a type m individual is born

at some time. Then

lim
N→∞h1

N,m,ε = 1 − e−ε.

PROOF. Consider a modified branching process in which type j individuals
give birth at rate one, die at rate one, and give birth to type j + 1 individuals at rate
uj+1. Let h0

N,m,ε be the probability that if the branching process starts with [εr1,m]
individuals, a type m individual is born at some time. Since different families are
independent, Lemma 4.1 implies

h0
N,m,ε = 1 − (1 − pm)

[εr−1
1,m] → 1 − e−ε,

where pm is the probability that a type 1 individual has a type m descendant.
We now compare this process to model N ′

2. The number of type 1 individu-
als in model N ′

2 jumps more slowly than the number of type 1 individuals in the
branching process, but in both processes type 1 individuals give birth to type 2
individuals at rate u2, and then type 2 individuals and their descendants evolve
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independently of the type 1’s. Therefore, if the probability p2,m that a type 2 indi-
vidual in the branching process produces a type m descendant were equal to q2,m,
then it would follow that h1

N,m,ε ≥ h0
N,m,ε. Instead, we only have p2,m ∼ q2,m be-

cause p2,m ∼ r2,m by the remark after Lemma 4.1 and q2,m ∼ r2,m by the induction
hypothesis. It follows that

h1
N,m,ε ≥ h0

N,m,ε

(
1 − o(1)

) → 1 − e−ε.

To get a bound in the opposite direction, observe that we can pick K → ∞
so that L = Kr−1

1,m = o(N), and with probability tending to one as N → ∞, the

number of type 1’s does not reach L. Therefore, writing h1
N,m,ε and h0

N,m,ε as
functions of the rate at which type 1 individuals give birth to type 2 individuals,
we have

h1
N,m,ε(u2) ≤ h0

N,m,ε

(
u2N/(N − L)

)(
1 + o(1)

) + o(1) → 1 − e−ε,

which completes the proof. �

LEMMA 4.8. Let ε > 0. Consider model M2 starting from [εr−1
1,m] type 1 indi-

viduals at time zero. Let hN,m,ε be the probability that a type m individual is born
at some time. Then

lim
N→∞|hN,m,ε − h1

N,m,ε| = 0.

PROOF. Recall the coupling between model M2 and model N2 described ear-
lier in this section. With this coupling, if a type 2 mutation occurs at the same time
in both processes, then it produces a type m descendant in one process if and only
if it produces a type m descendant in the other. Consequently, it suffices to bound
the probability that some type 2 mutation that appears in one process but not the
other produces a type m descendant.

Lemma 4.3 bounds this probability for mutations that occur in one model but
get suppressed in the other because there are no individuals of type 2 or higher. It
remains to consider the mutations experienced by the |Z(t)| individuals that are
type 1 in one process but not the other. Pick s large enough so that the probabil-
ity N2 or M2 does not die out by time sr−1

1,m is < δ. Pick η so that ηs < δ2. By
Lemma 4.6, if N is large, we have maxt≤s |ZN(t)| < η with probability > 1 − δ.
The expected number of births that occur in one process but not in the other before
time sr−1

1,m when maxt≤s |ZN(t)| < η is bounded by

2ηr−1
1,m · sr−1

1,mu2 ≤ 2δ2r−2
1,mu2.

Using Chebyshev’s inequality, it follows that with probability > 1−4δ the number
of type 2 mutant births that occur in one process but not the other is bounded by
δr−2

1,mu2 = δr−1
2,m. When this occurs, the success probabilities differ by at most δ

because each mutation has probability q2,m ∼ r2,m of producing a type m descen-
dant. Since δ > 0 is arbitrary, the desired results follow. �
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PROOF OF PROPOSITION 4.1. The probability that the number of individuals
of type greater than zero reaches [εr−1

1,m] is 1/[εr−1
1,m]. If, at the time T when the

number of individuals of type greater than zero reaches [εr−1
1,m], we change the

type of all individuals whose type is nonzero to type 1, and if we disregard type 2
mutations that occur when there is another individual of type j ≥ 2, then the prob-
ability of getting a type m individual after this time becomes hN,m,ε . Since these
changes of the types can only reduce the probability of getting a type m individual,
we have

qm ≥ 1

[εr−1
1,m]hN,m,ε.(4.7)

Also, for a type m individual to appear, either the type m individual must be de-
scended from a type 1 individual that is alive at time T , or else the type m indi-
vidual must be descended from a type 2 individual that existed before time T , so
using Lemmas 4.3 and 4.4, it follows that

qm ≤ 1

[εr−1
1,m]hN,m,ε + Cεr1,m.(4.8)

The result follows by letting ε → 0. �

5. Proof of Theorem 2. In this section, we complete the proof of Theorem 2.
The argument is based on the following result on Poisson approximation, which is
part of Theorem 1 of [2].

LEMMA 5.1. Suppose (Ai)i∈I is a collection of events, where I is any index
set. Let W = ∑

i∈I 1Ai
be the number of events that occur, and let λ = E[W ] =∑

i∈I P(Ai). Suppose for each i ∈ I, we have i ∈ βi ⊂ I. Let Fi = σ((Aj )j∈I\βi
).

Define

b1 = ∑
i∈I

∑
j∈βi

P (Ai)P (Aj ),

b2 = ∑
i∈I

∑
i �=j∈βi

P (Ai ∩ Aj),

b3 = ∑
i∈I

E[|P(Ai |Fi ) − P(Ai)|].

Then |P(W = 0) − e−λ| ≤ b1 + b2 + b3.

We will use the following lemma to get the second moment estimate needed to
bound b2. When we apply this result, the individuals born at times t1 and t2 will
both be type 1. We call the second one type 2 to be able to easily distinguish the
descendants of the two individuals.
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LEMMA 5.2. Fix times t1 < t2. Consider a population of size N which evolves
according to the Moran model in which all individuals initially have type 0. There
are no mutations, except that one individual becomes type 1 at time t1, and one
type 0 individual (if there is one) becomes type 2 at time t2. Fix a positive integer
L ≤ N/2. For i = 1,2, let Yi(t) be the number of type i individuals at time t and
let Bi be the event that L ≤ maxt≥0 Yi(t) ≤ N/2. Then

P(B1 ∩ B2) ≤ 2/L2.

PROOF. Because (Y1(t), t ≥ t1) is a martingale, it is clear that P(B1) ≤ 1/L.
Let s1 < s2 < · · · < sJ be the ordered times, after time t2, at which the Y1 process
jumps. For t ≥ t2, let Z(t) = Y2(t)A(t), where

A(t) = N − Y1(t2)

N − Y1(t)
= ∏

i : si≤t

N − Y1(si−)

N − Y1(si)
.

We claim that conditional on (Y1(t), t ≥ t1), the process (Z(t), t ≥ t2) is a martin-
gale.

To see this, note that between the times si , births and deaths of type 2 individuals
occur at the same rate, even conditional on (Y1(t), t ≥ t1), so Z(t) experiences both
positive and negative jumps of size (N − Y1(t2))/(N − Y1(t)) at the same rate. At
the time si , if Y1(si) = Y1(si−) + 1, then one of the N − Y1(si−) individuals of
type other than 1 dies at time si , so we have Y2(si) = Y2(si−) − 1 with probability
αi = Y2(si−)/(N − Y1(si−)) and Y2(si) = Y2(si−) with probability 1 − αi . Note
that

(1 − αi)Y2(si−) + αi

(
Y2(si−) − 1

) = Y2(si−) − αi

= Y2(si−)

(
1 − 1

N − Y1(si−)

)

= Y2(si−)
N − Y1(si)

N − Y1(si−)
.

Likewise, if Y1(si) = Y1(si−) − 1, then one of the N − Y1(si−) individuals of
type other than 1 gives birth at time si , so Y2(si) = Y2(si−) + 1 with probability
αi = Y2(si−)/(N − Y1(si−)) and Y2(si) = Y2(si−) with probability 1 − αi , and
we have

(1 − αi)Y2(si−) + αi

(
Y2(si−) + 1

) = Y2(si−) + αi

= Y2(si−)

(
1 + 1

N − Y1(si−)

)

= Y2(si−)
N − Y1(si)

N − Y1(si−)
.

The martingale property follows because A(si) = A(si−)(N − Y1(si−))/(N −
Y1(si)), compensating for the expected change in the Y2 process.
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Since (Z(t), t ≥ t2) is a martingale conditional on (Y1(t), t ≥ t1) and Z(t2) = 1,
we have P(Z(t) ≥ L/2 for some t |B1) ≤ 2/L. On the event B1, we have A(t) ≤ 2
for all t ≥ t2, so

P(B2|B1) ≤ P
(
Y2(t) ≥ L for some t |B1

)
≤ P

(
Z(t2) ≥ L/2 for some t |B1

) ≤ 2/L.

Since P(B1) ≤ 1/L, the result follows. �

We now introduce a set-up that will allow us to apply Lemma 5.1. Let ε > 0, and
let K be a large positive number that will be chosen later. Let q̄m be the probability
that in model M1:

• there is eventually a type m individual in the population,
• the maximum number of individuals of nonzero type over all times is between

ε/r1,m and N/2, and
• the family lives for time ≤ K/r1,m; that is, there are no individuals of nonzero

type remaining at time K/r1,m.

We will call the second and third points the side conditions. Divide the inter-
val [0, t/(Nr0,m)] into M subintervals of equal length, where Mr1,m → ∞ as
N → ∞. Label the intervals I1, . . . , IM , and let Di be the event that there is
a type 1 mutation in the interval Ii .

For bookkeeping purposes, we will also introduce type 1b mutations, which
individuals of type greater than zero experience at rate u1 but which do not affect
the type of the individual. Mutations to type zero individuals will be called type 1a
mutations, and the phrase “type 1 mutation” will refer both to type 1a and type 1b
mutations for the rest of this section. This will ensure that type 1 mutations are
always occurring at rate exactly Nu1. To determine whether or not the first type 1b
mutation in interval i is “successful,” we let ξ1, . . . , ξM be i.i.d. random variables,
independent of our process, that equal 1 with probability q̄m.

Let Ai be the event that there is a type 1 mutation in the interval Ii and one of
the following occurs:

• The first type 1 mutation in Ii has type 1a. The individual that gets this mutation
has a type m descendant and the side conditions hold. That is, the maximum
number of descendants of the mutation over all times is between ε/r1,m and
N/2, and there are no descendants of the mutation remaining in the population
at the time K/r1,m after the mutation occurred.

• The first type 1 mutation in Ii has type 1b, and ξi = 1.

As in Lemma 5.1, let W = ∑M
i=1 1Ai

be the number of events that occur, and let
λ = E[W ].

LEMMA 5.3. lim supN→∞ |P(W = 0) − e−λ| = 0.
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PROOF. Let βi consist of all subintervals whose distance to Ii is at most
K/r1,m. Define b1, b2 and b3 as in Lemma 5.1. We first claim that b3 = 0. Suppose
Ii = [a, b]. Note that the event Ai does not depend on the state of the population at
time a. Also, because of the side condition that a mutation is not considered suc-
cessful if it has descendants surviving for a time longer than K/r1,m, the event Ai

is determined by time b+K/r1,m and is therefore independent of the events Aj for
j > i and j /∈ βi . Likewise, all of the events Aj for j < i and j /∈ βi are determined
by the behavior of the process before time a, so these events are also independent
of Ai . It follows that Ai is independent of (Aj )j /∈βi

, and thus that b3 = 0.
The length |Ii | of the interval Ii is t/(MNr0,m), so since type 1 mutations oc-

cur at rate Nu1, we have P(Di) ≤ Nu1|Ii | = t/(Mr1,m). Since P(Ai |Di) = q̄m,
Proposition 4.1 gives

P(Ai) = q̄mP (Di) ≤ tqm/(Mr1,m) ∼ t/M.

There are at most 2(K/(r1,m|Ii |) + 1) intervals in βi , so for large M

b1 ≤ M · 2
(

K

r1,m|Ii | + 1
)

·
(

t

M

)2

= 2M · KMNr0,m

r1,mt

(
t

M

)2

+ 2t2

M
= 2KNu1t + 2t2

M
.

Since Nu1 → 0 by (i) and M → ∞, b1 → 0.
To bound b2, note that P(Di ∩ Dj) ≤ [t/(Mr1,m)]2 because mutations in dis-

joint intervals occur independently. We now apply Lemma 5.2 with L = ε/r1,m,
t1 being the time of the first mutation in Ii , and t2 being the time of the first mu-
tation in Ij . For the event Ai to occur, it is necessary for the event Bi considered
in Lemma 5.2 to occur. Note that mutations do not effect the result of Lemma 5.2
because the side conditions involve all descendants of the original mutation, re-
gardless of type.

P(Ai ∩ Aj |Di ∩ Dj) ≤ 2r2
1,m/ε2

and thus P(Ai ∩ Aj) ≤ 2t2/(Mε)2. Since there are at most 2(K/(r1,m|Ii |) + 1)

intervals in βi , we have

b2 ≤ M · 2
(

K

r1,m|Ii | + 1
)

2t2

(Mε)2

= 4M · KMNr0,m

r1,mt

(
t

Mε

)2

+ 4t2

Mε2 = 4ε−2KNu1t + 4t2

Mε2 .

This shows b2 → 0, and completes the proof. �

LEMMA 5.4. Let σm be the first time at which there is a type 1 individual in
the population that will have a type m descendant. Then

lim
N→∞P

(
σm > t/(Nr0,m)

) = exp(−t).(5.1)



WAITING TIMES FOR MUTATIONS 703

PROOF. To obtain (5.1) from Lemma 5.3, it suffices to show that there is
a constant C such that for sufficiently large N , we have |t − λ| ≤ Cε and
|P(W = 0) − P(σm > t/(Nr0,m))| ≤ Cε. The result will then follow by letting
ε → 0. Clearly, q̄m ≤ qm, and qm − q̄m is at most the probability that in model M1,
a type m individual appears even though either (a) the total number of individ-
uals of nonzero type never exceeds εr1,m, (b) the total number of individuals of
nonzero type exceeds N/2, or (c) the family does not die out before K/r1,m. Be-
cause Nr1,m → ∞, we have K/r1,m < N for sufficiently large N , so we can apply
Lemma 3.1 to show that the probability that a given mutation survives for as long
as K/r1,m is at most Cr1,m/K . Using Lemma 4.4, we get

qm − q̄m ≤ Cεr1,m + 2/N + Cr1,m/K.

Since Nr1,m → ∞ by (iv), we have 2/N � r1,m, so if K is large, we get

qm − Cεr1,m ≤ q̄m ≤ qm.(5.2)

Note that

λ = ∑
i∈I

P(Ai) = ∑
i∈I

P(Di)q̄m = MP(D1)q̄m

= Mq̄m

(
1 − e−Nu1|I1|) ∼ Mq̄mNu1|I1| = t q̄m/r1,m.

Because qm ∼ r1,m by Proposition 4.1, this result combined with (5.2) implies
|t − λ| ≤ Cε for sufficiently large N .

It remains to bound |P(W = 0) − P(σm > t/(Nr0,m))|. We can have W > 0
with σm > t/(Nr0,m) only if for some i, there is a type 1b mutation in Ii and
ξi = 1. Let X(t) be the number of individuals of nonzero type. As long as X(t)

stays below εN , type 1b mutations occur at rate at most Nεu1, so the probability
that this occurs is at most

(εNu1)(t/Nr0,m)q̄m ≤ Cε,

using Proposition 4.1. Since individuals give birth and die at the same rate,
(X(t), t ≥ 0) is a submartingale. Also, E[X(t/(Nr0,m))] is the expected number
of type 1a mutations before time t/(Nr0,m), which is at most t/r1,m. Therefore,
by Doob’s maximal inequality,

P
(
X(s) ≥ εN for some s ≤ t/(Nr0,m)

) ≤ t/(εNr1,m),

which goes to zero as N → ∞ by condition (iv).
We can have W = 0 with σm ≤ t/(Nr0,m) in one of two ways. One possibil-

ity is that there could be a successful type 1 mutation in one of the M subinter-
vals that is not the first type 1 mutation in that interval. The expected number of
type 1 mutations in the ith interval that are not the first in their interval is at most
(t/Mr1,m)2. Therefore, the probability that some successful type 1 mutation is not
the first type 1 mutation in its interval is at most M(t/Mr1,m)2qm ≤ C/(Mr1,m).
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Since Mr1,m → ∞, this probability tends to zero as N → ∞. The other possibility
is that there could be a successful type 1 mutation that does not satisfy the extra
conditions we imposed. The probability that this occurs is at most

(Nu1)(t/Nr0,m)(qm − q̄m) ≤ Ctε

by (5.2). This observation completes the proof of the lemma. �

The following result in combination with Lemma 5.4 implies Theorem 2.

LEMMA 5.5. We have

Nr0,m(τm − σm) → 0 in probability.(5.3)

PROOF. Let ε > 0 and δ > 0. By Lemma 5.4, we can choose s large enough
that for sufficiently large N ,

P
(
σm > s/(Nr0,m)

)
< δ/3.

By Lemma 3.1, the probability that a type 1a mutation takes longer than
time ε/(Nr0,m) to die out or fixate is at most C max{1/N,Nr0,m/ε}. Because
the expected number of type 1a mutations before time s/Nr0,m is at most
(Nu1)(s/Nr0,m) = u1s/r0,m, it follows from Markov’s inequality that the proba-
bility that some type 1a mutation that appears before time s/(Nr0,m) takes longer
than time ε/(Nr0,m) to die out or fixate is at most Cs max{u1/(Nr0,m),Nu1/ε}.
As N → ∞, the first of these terms goes to zero by (iv) while the second goes to
zero by (i), so this probability is less than δ/3 for sufficiently large N . Finally, the
probability that one of the type 1a mutations before time s/(Nr0,m) fixates is at
most

s

Nr0,m

· Nu1 · 1

N
,

since mutations occur at rate Nu1 and fix with probability 1/N . This is less
than δ/3 for large N by (iv). Hence, P(Nr0,m(τm − σm) > ε) < δ for sufficiently
large N . �

6. The key to the proof of Theorem 3. Throughout this section and the next,
we assume all of the hypotheses of Theorem 3 are satisfied. The main difficulty in
proving Theorem 3 is to prove the following result.

PROPOSITION 6.1. Let ε > 0. Consider a process which evolves according
to the rules of model M1 but starting with [εN] type 1 individuals and all other
individuals having type 0. Let gN,m(ε) be the probability that either a type m indi-
vidual is born at some time or eventually all N individuals have type greater than
zero. Then

lim
ε→0

lim inf
N→∞ ε−1gN,m(ε) = lim

ε→0
lim sup
N→∞

ε−1gN,m(ε) = α,

where α is as defined in (1.4).
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The first lemma will allow us to ignore overlap between type 2 families.

LEMMA 6.1. With probability tending to one as N → ∞, no type 2 individual
that is born while there is an individual of type 0 in the population and another
individual in the population of type 2 or higher will have a type m descendant.

PROOF. The argument is similar to the proof of Lemma 4.3. By (3.5), when
we start with [Nε] type 1 individuals, the total number of births and deaths of
individuals of nonzero type, before the number of individuals of nonzero type
reaches 0 or N , is at most 2εN2. Since individuals give birth and die at rate 1
and mutate at rate u2, the expected number of type 2 mutations is at most εN2u2.
By (3.8), the expected amount of time during which there is an individual of type 2
or higher present in the population is at most Cε(N2 logN)u2. Type 2 mutations
happen at rate at most Nu2 and produce a type m descendant with probability
q2,m, so the probability that a type 2 individual born while there is another individ-
ual in the population of type 2 or higher produces a type m descendant is at most
CεN3(logN)u2

2q2,m, which is at most

C(Nr1,m)2(N logN)u2,(6.1)

because u2r2,m = r2
1,m and q2,m ∼ r2,m by Corollary 4.1. Also, we are assuming

Nr1,m → γ 1/2, and (ii) gives r1,m ≥ Cu
1−1/2m−1

2 for some constant C. Therefore,

lim supN→∞ Nu
1−1/2m−1

2 < ∞, which in combination with (iii) implies that

(N logN)u2 → 0.(6.2)

It follows that the expression in (6.1) tends to zero as N → ∞. �

In view of Lemma 6.1, it suffices to prove Proposition 6.1 for model M2, in
which no type 2 mutation can occur while there is another individual of type 2 or
higher in the population. We will work with model M2 for the rest of this section.
As in the proof of Theorem 1, we need to deal with the correlations between in-
dividuals of type 1 and of types j ≥ 2 caused by the fact that individuals of one
positive type may replace another. To do this, we cut out the time intervals in which
an individual of type 2 or higher is present in the population.

Let Xi(t) be the number of type i individuals at time t . Let

f (t) = sup
{
s :

∫ s

0
1{X0(t)+X1(t)=N} du = t

}

and let Y(t) = X1(f (t)), so the process (Y (t), t ≥ 0) tracks the evolution of the
number of type 1 individuals after one cuts out the times at which individuals of
type j ≥ 2 are present. Let β0 = 0. For i ≥ 1, let βi be the first time t after βi−1
such that Y(t) �= Y(t−) and there is no type two individual alive at time f (t)−,
assuming such a time exists which it will a.s. as long as Y(βi−1) /∈ {0,N}. That
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is, the times βi are the times of Y process jumps that happen because of a birth or
death of a type one individual and do not involve the birth of a type two individual.
Let g(t) = max{i :βi ≤ t}, so g(t) is the number of these jumps that have happened
by time t .

We now define a discrete-time process (Zi)
∞
i=0, which omits the jumps in Y

due to time intervals being removed, but retains all of the other jumps of size 1.
Let Z0 = [Nε]. If i ≥ 1, Y(βi−1) /∈ {0,N}, and ε3N < Zi−1 < (1 − ε2)N , then
let Zi = Zi−1 + 1 if Y(βi) = Y(βi−) + 1, and let Zi = Zi−1 − 1 if Y(βi) =
Y(βi−) − 1. Using this induction, we can define the process (Zi)

T
i=0, where T =

inf{i :Y(βi) ∈ {0,N},Zi ≤ ε3N, or Zi ≥ (1 − ε2)N}. On the event that ε3N <

Zi−1 < (1−ε2)N and 0 < Y(βi) < N , we have P(Zi = Zi−1 +1|Z0, . . . ,Zi−1) =
P(Zi = Zi−1 −1|Z0, . . . ,Zi−1) = 1/2. We then continue the process for i > T by
setting Zi to be Zi−1 + 1 or Zi−1 − 1 with probability 1/2 each, independently of
the population process. The process (Zi)

∞
i=0 is therefore a simple random walk.

Note that T is smaller than the absorption time of the process (Zi)
∞
i=0 in {0,N},

which can be compared to the absorption time of model M0 started with [Nε]
type 1 individuals. It therefore follows from (3.9) that E[βT ] ≤ N . Thus, if θ > 0,
then by Markov’s inequality,

P

(
βT >

N

θ

)
≤ θ.(6.3)

Likewise, since T is at most the number of births and deaths of individuals of
nonzero type started from [Nε] such individuals, (3.5) gives E[T ] ≤ 2N2ε ≤ 2N2.
Therefore, for θ > 0,

P

(
T >

2N2

θ

)
≤ θ.(6.4)

LEMMA 6.2. For all δ > 0, we have

lim
N→∞P

(
max

0≤t≤βT

∣∣Y(t) − Zg(t)

∣∣ > δN

)
= 0.

PROOF. Let ζ0 = 0 and for i ≥ 1, let ζi be the first time t after ζi−1 such that
there is a type 2 individual alive at time f (t)−, provided such a time exists. Thus,
the times ζi for i ≥ 1 are the times at which the process (Y (t), t ≥ 0) possibly
jumps because we have cut out the lifetime of a type 2 family. Every jump time of
(Y (t), t ≥ 0) is either βi or ζi for some i. Since only the jumps at the times βi are
incorporated into the process (Zi)

∞
i=1, we have

Y(t) − Zg(t) = ∑
i : ζi≤t

(
Y(ζi) − Y(ζi−)

)
.(6.5)

We will show that the right-hand side is small because type 2 individuals are not
alive in the population for a long enough time for large changes in the size of the
type 1 population to happen during this time.
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A type 1 individual is lost whenever a type 2 individual is born. The other
changes in the number of type 1 individuals that contribute to the right-hand side
of (6.5) are births and deaths that occur while there are already type 2 individuals
in the population. Let ξi = 1 if the ith such event is a birth, and let ξi = −1 if the
ith such event is a death. Let J be the number of such events before time f (βT ),
so if Sj = ξ1 + · · · + ξJ , then∣∣Y(t) − Zg(t)

∣∣ ≤ |{i : ζi ≤ T }| + max
j≤J

|Sj |(6.6)

for all t ≤ βT .
The first term on the right-hand side of (6.6) is the number of type 2 mutations

by time βT , so as noted above its expected value is at most εN2u2. It follows from
Markov’s inequality and (6.2) that P(|{i : ζi ≤ T }| > δN/2) ≤ 4εN2u2/(δN) → 0
as N → ∞.

Since (Sj )
∞
j=1 is a simple random walk, by the monotone convergence theorem,

the L2-maximal inequality for martingales, and Wald’s second equation, we have

E

[
max
j≤J

S2
j

]
= lim

n→∞E

[
max

j≤J∧n
S2

j

]
≤ 4 lim

n→∞E[S2
J∧n]

= 4 lim
n→∞E[J ∧ n] = 4E[J ].

We have observed that the expected amount of time for which there is an individual
of type 2 or greater present in the population is at most Cε(N2 logN)u2. The rate
at which type one individuals are either being born or dying is always at most 2N ,
so E[J ] ≤ 2Cε(N3 logN)u2. By Chebyshev’s inequality and (6.2),

lim sup
N→∞

P

(
max
j≤J

|Sj | > δN

2

)
≤ lim sup

N→∞
16E[J ]
δ2N2

≤ lim sup
N→∞

32Cε(N logN)u2

δ2 = 0

and the result follows. �

LEMMA 6.3. For all δ > 0, we have

lim
N→∞P

(∣∣∣∣
∫ βT

0

(
Y(t) − Zg(t)

)
dt

∣∣∣∣ > δN2
)

= 0.

PROOF. Let θ > 0. By Lemma 6.2 and (6.3),

lim sup
N→∞

P

(∣∣∣∣
∫ βT

0

(
Y(t) − Zg(t)

)
dt

∣∣∣∣ > δN2
)

≤ lim sup
N→∞

(
P

(
βT >

N

θ

)
+ P

(
max

0≤t≤βT

∣∣Y(t) − Zg(t)

∣∣ > δθN

))
≤ θ.

Letting θ → 0 gives the result. �
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LEMMA 6.4. For all δ > 0, we have

lim
N→∞P

(∣∣∣∣
∫ βT

0
Zg(t) dt −

T −1∑
i=0

N

2(N − Zi)

∣∣∣∣ > δN2
)

= 0.

PROOF. For i ≤ T − 1, let

Di = N

2(N − Zi)
− (βi+1 − βi)Zi.

We need to show that

lim
N→∞P

(∣∣∣∣∣
T −1∑
i=0

Di

∣∣∣∣∣ > δN2

)
= 0.(6.7)

At time t , events that cause the number of type 1 individuals to change but do not
involve the birth of a type 2 happen at rate 2Y (t)(N − Y (t))/N . Therefore, if we
define

ξi =
∫ βi+1

βi

2Y (t)(N − Y(t))

N
dt,

then the random variables ξi are independent and have the exponential distribution
with mean one. Note that the process Y is constant on the intervals (βi, βi+1)

except when type 2 mutations occur. For i ≤ T − 1, let

D̃i = N

2(N − Zi)
(1 − ξi).

Let θ > 0, so P(T > 2N2/θ) ≤ θ by (6.4). For 0 ≤ j ≤ [2N2/θ ], let Mj =∑(T −1)∧j
i=0 D̃i . Let Fj be the σ -field generated by (Y (t),0 ≤ t ≤ βj ). Note that

E[D̃i |Fi] = 0, so the process (Mj )
[2N2/θ ]
j=0 is a martingale. On the event that

i ≤ T − 1, we have Zi ≤ (1 − ε2)N, and hence

Var(D̃i |Fi ) = N2

4(N − Zi)2 ≤ 1

4ε4 .

It follows from the L2-maximal inequality for martingales, and orthogonality of
martingale increments that

E

(
max

0≤j≤[2N2/θ ]
M2

j

)
≤ 4E

[
M2

[2N2/θ ]
] ≤ 4 · 2N2

θ
· 1

4ε4 = 2N2

θε4 .

Using Chebyshev’s inequality,

P

(∣∣∣∣∣
T −1∑
i=0

D̃i

∣∣∣∣∣ >
δN2

2

)
≤ θ + P

(
max

0≤j≤[2N2/θ ]
|Mj | > δN2

2

)

≤ θ + 4

δ2N4

(
2N2

θε4

)
= θ + 8

θδ2ε4N2 .
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Since θ > 0 was arbitrary, it follows that

lim
N→∞P

(∣∣∣∣∣
T −1∑
i=0

D̃i

∣∣∣∣∣ >
δN2

2

)
= 0.(6.8)

To convert this into a bound on the Di , we note that

|Di − D̃i | =
∣∣∣∣ N

2(N − Zi)

∫ βi+1

βi

2Y (t)(N − Y(t))

N
dt − (βi+1 − βi)Zi

∣∣∣∣
≤

∫ βi+1

βi

∣∣∣∣Y (t)(N − Y(t))

N − Zi

− Zi

∣∣∣∣dt.

On the event that |Y(t) − Zg(t)| ≤ γN for all 0 ≤ t ≤ βT , there is a constant Cε

depending on ε such that for all i ≤ T − 1 and t ∈ [βi, βi+1], we have

Y (t)(N − Y(t))

N − Zi

− Zi ≤ (Zi + γN)(N − Zi + γN)

N − Zi

− Zi

≤ (Zi + γN)

(
1 + γ

ε2

)
− Zi ≤ CεγN,

where in the second inequality we have used Zi ≤ (1 − ε2)N . For a bound in the
other direction, we note that

Y (t)(N − Y(t))

N − Zi

− Zi ≥ (Zi − γN)(N − Zi − γN)

N − Zi

− Zi

≥ (Zi − γN)

(
1 − γ

ε2

)
− Zi ≥ −CεγN.

Thus, if we let θ > 0 and γ = δθ/2Cε , then for sufficiently large N ,

P

(∣∣∣∣∣
T −1∑
i=0

(Di − D̃i)

∣∣∣∣∣ >
δN2

2

)

≤ P

(
βT >

N

θ

)
+ P

(
max

0≤t≤βT

∣∣Y(t) − Zg(t)

∣∣ > γN

)
.

Using (6.3), Lemma 6.2, and letting θ → 0, we get

lim
N→∞P

(∣∣∣∣∣
T −1∑
i=0

(Di − D̃i)

∣∣∣∣∣ >
δN2

2

)
= 0.(6.9)

Now (6.7) follows from (6.8) and (6.9). �

Let D be the event that either ZT ≥ (1 − ε2)N or some type 2 mutation that
occurs before time f (βT ) has a type m descendant.
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LEMMA 6.5. We have

lim
N→∞

((
1 − P(D)

) − E

[
exp

(
−r2,m

T −1∑
i=0

u2N

2(N − Zi)

)
1{ZT ≤ε3N}

])
= 0.

PROOF. If there is no type 2 individual in the population at time t , then the
rate at which a type 2 individual is born is u2X1(t). Because no type 2 mutations
occur while there is another type 2 individual in the population, each mutant type 2
individual independently has a type m descendant with probability q2,m. It follows
that there is a mean one exponential random variable ξ such that some original
type two individual born before time f (βT ) has a type m descendant if and only if

ξ ≤
∫ βT

0
Y(t)u2q2,m dt.(6.10)

Because changes in the population resulting from the birth of a type 2 individual
are not recorded in the process (Zi)

T −1
i=0 , the random variable ξ can be constructed

to be independent of the process (Zi)
T −1
i=0 . Therefore, by conditioning on (Zi)

T −1
i=0 ,

we get

P

(
{ZT ≤ ε3N} ∩

{
ξ > r2,m

T −1∑
i=0

u2N

2(N − Zi)

})
(6.11)

= E

[
exp

(
−r2,m

T −1∑
i=0

u2N

2(N − Zi)

)
1{ZT ≤ε3N}

]
.

The event that D fails to occur is the same as the event that ZT ≤ ε3N

and that (6.10) fails to occur. It follows that the difference between P(Dc) =
1 − P(D) and the probability in (6.11) is at most the probability that ξ is between∫ βT

0 Y(t)u2q2,m dt and r2,m

∑T −1
i=0 u2N/(2(N − Zi)). To bound the difference be-

tween these quantities, note that Lemmas 6.3 and 6.4 give

lim
N→∞P

(∣∣∣∣∣
∫ βT

0
u2Y(t) dt −

T −1∑
i=0

u2N

2(N − Zi)

∣∣∣∣∣ > δN2u2

)
= 0

for all δ > 0. Since r2
1,m = u2r2,m and (Nr1,m)2 → γ , we see that N2u2r2,m stays

bounded as N → ∞ and it follows that

lim
N→∞P

(∣∣∣∣∣
∫ βT

0
u2r2,mY (t) dt − r2,m

T −1∑
i=0

u2N

2(N − Zi)

∣∣∣∣∣ >
δ

2

)
= 0(6.12)

for all δ > 0. Also, q2,m ∼ r2,m by Corollary 4.1 and P(βT > N/θ) ≤ θ by (6.3).
Since N2u2r2,m stays bounded,

lim sup
N→∞

P

(∣∣∣∣
∫ βT

0
u2q2,mY (t) dt −

∫ βT

0
u2r2,mY (t) dt

∣∣∣∣ >
δ

2

)
(6.13)

≤ lim sup
N→∞

P

(
Nu2βT |r2,m − q2,m| > δ

2

)
= 0.
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Combining (6.12) and (6.13) gives

lim
N→∞P

(∣∣∣∣∣
∫ βT

0
u2q2,mY (t) dt − r2,m

T −1∑
i=0

u2N

2(N − Zi)

∣∣∣∣∣ > δ

)
= 0.

Since

P

(
r2,m

T −1∑
i=0

u2N

2(N − Zi)
− δ ≤ ξ ≤ r2,m

T −1∑
i=0

u2N

2(N − Zi)
+ δ

)
≤ 2δ,

it follows that

lim sup
N→∞

∣∣∣∣∣(1 − P(D)
) − E

[
exp

(
−r2,m

T −1∑
i=0

u2N

2(N − Zi)

)
1{ZT ≤ε3N}

]∣∣∣∣∣ ≤ 2δ,

and the result follows by letting δ → 0. �

Let A be the event that either Y(t) = N for some t , or a type m individual is
born at some time.

LEMMA 6.6. There exists a constant C, not depending on ε or N , such that

|P(A) − P(D)| ≤ Cε2.

PROOF. Let δ > 0, and assume that |Y(t) − Zg(t)| ≤ δN for 0 ≤ t ≤ βT . First,
suppose D occurs. If a type 2 mutation that occurs before time f (βT ) has a type m

descendant, then A must occur. If ZT ≥ (1 − ε2)N , then Y(βT ) ≥ (1 − ε2 − δ)N ,
and conditional on this event the probability that Y(t) = N for some t , in which
case A occurs, is at least 1 − ε2 − δ. Therefore, using Lemma 6.2,

lim sup
N→∞

P(D ∩ Ac) ≤ ε2 + δ.

Now, suppose Dc occurs. Note that if δ < ε3 and |Y(t) − Zg(t)| ≤ δN for 0 ≤ t ≤
βT , then we cannot have Y(βT ) ∈ {0,N}, which means we must have ZT ≤ ε3N

and, therefore, Y(βT ) ≤ (ε3 + δ)N . Conditional on this event, the probability that
Y(t) = N for some t is at most ε3 + δ, and the probability that one of the type one
individuals at time f (βT ) has a type m descendant is at most (ε3 + δ)Nq1,m. From
these bounds and Lemma 6.2, it follows that

lim sup
N→∞

P(Dc ∩ A) ≤ (1 + γ 1/2)(ε3 + δ).

The lemma follows by letting δ → 0. �

Now let (Bt )t≥0 be a Brownian motion with B0 = ε. Let U = inf{t :Bt =
ε3 or Bt = 1 − ε2}.
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LEMMA 6.7. We have

lim
N→∞E

[
exp

(
−r2,m

T −1∑
i=0

u2N

2(N − Zi)

)
1{ZT ≤ε3N}

]

= E

[
exp

(
−γ

2

∫ U

0

1

1 − Bt

dt

)
1{BU=ε3}

]
.

PROOF. Define a process (Wt)t≥0 such that Wt = N−1Z[N2t]. Let R =
inf{t :Wt ≤ ε3 or Wt > 1 − ε2}. Note that R = T/N2 and 1{ZT ≤ε3N} = 1{WR≤ε3}
on the event that for some δ < ε3, we have |Y(t) − Zg(t)| ≤ δN for 0 ≤ t ≤ βT ,
which by Lemma 6.2 happens with probability tending to one as N → ∞.

Let δ < ε3. For random variables X
(1)
N and X

(2)
N , write X

(1)
N ≈ X

(2)
N if for all

η > 0, there is an N(η) such that if N ≥ N(η) then |X(1)
N /X

(2)
N − 1| < η on the

event that |Y(t) − Zg(t)| ≤ δN for 0 ≤ t ≤ βT . We have

1

2

∫ R

0

1

1 − Wt

dt ≈ 1

2

∫ R

0

1

1 − N−1Z[N2t]
dt = 1

2

∫ N2R

0

1

1 − N−1Z[s]
N−2 ds

= N−2
∫ T

0

N

2(N − Z[s])
ds = N−2

T −1∑
i=0

N

2(N − Zi)
.

Since u2r2,m = r2
1,m and (Nr1,m)2 → γ , we have

r2,m

T −1∑
i=0

u2N

2(N − Zi)
≈ γN−2

T −1∑
i=0

N

2(N − Zi)
≈ γ

2

∫ R

0

1

1 − Wt

dt.

In view of Lemma 6.2, it follows that

lim
N→∞

(
E

[
exp

(
−r2,m

T −1∑
i=0

u2N

2(N − Zi)

)
1{ZT ≤ε3N}

]

− E

[
exp

(
−γ

2

∫ R

0

1

1 − Wt

dt

)
1{WR=ε3}

])
= 0.

Thus, it suffices to show that for all λ > 0, we have

lim
N→∞E

[
exp

(
−λ

∫ R

0

1

1 − Wt

dt

)
1{WR=ε3}

]
(6.14)

= E

[
exp

(
−λ

∫ U

0

1

1 − Bt

dt

)
1{BU=ε3}

]
.

Since (Zi)
∞
i=0 is a simple random walk, (Wt)0≤t≤s converges weakly as N →

∞ to (Bt )0≤t≤s for all s > 0. Let D[0, s] be the set of real-valued functions de-
fined on [0, s] which are right continuous and have left limits. If g :D[0, s] → R
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is bounded, and if the set of points at which it is not continuous has Wiener
measure zero, then the weak convergence of (Wt)0≤t≤s to (Bt )0≤t≤s implies that
limN→∞ E[g((Wt)0≤t≤s)] = E[g((Bt )0≤t≤s)]. Therefore,

lim
N→∞E

[
exp

(
−λ

∫ R∧s

0

1

1 − Wt

dt

)
1{WR∧s=ε3}

]
(6.15)

= E

[
exp

(
−λ

∫ U∧s

0

1

1 − Bt

dt

)
1{BU∧s=ε3}

]
.

Note that if ω : [0, s] → R is continuous, then the function g used in (6.15) is
continuous at ω unless either inf{t :ω(t) = ε3} < inf{t :ω(t) < ε3} or inf{t :ω(t) =
1−ε2} < inf{t :ω(t) > 1−ε2}, which would happen if ω reaches a local minimum
when it first hits ε3 or a local maximum when it first hits 1 − ε2. Brownian motion
paths almost surely do not have this property, so (6.15) is valid. Finally, (6.14)
follows from (6.15) by letting s → ∞. �

Let V = inf{t :Bt = 0 or Bt = 1}.
LEMMA 6.8. Let I (s) = ∫ s

0
1

1−Bt
dt . If λ > 0, there is a constant C such that∣∣E[

exp(−λI (U))1{BU=ε3}
] − E

[
exp(−λI (V ))1{BV =0}

]∣∣ ≤ Cε2.(6.16)

PROOF. Define a process (B ′
t )t≥0 by B ′

t = BU+t . Let τ ′
a = inf{t :B ′

t = a}.
Let D1 be the event that BU = 1 − ε2 and BV = 0. Let D2 be the event that
BU = ε3 and τ ′

1/2 < τ ′
0. Let D3 be the event that BU = ε3 and τ ′

0 > ε2. Note that
on the event (D1 ∪ D2 ∪ D3)

c, we have 1{BU=ε3} = 1{BV =0} and on this event we
have

0 ≤
∫ V

0

1

1 − Bt

dt −
∫ U

0

1

1 − Bt

dt ≤ 2(V − U) ≤ 2ε2.

It follows that the left-hand side of (6.16) is at most P(D1) + P(D2) + P(D3) +
2λε2.

Because Brownian motion is a martingale, we have P(D1) ≤ P(BV = 0|BU =
1 − ε2) = ε2 and likewise P(D2) ≤ 2ε3. Therefore, it remains only to show that
P(D3) ≤ Cε2. By the reflection principle,

1
2P(τ ′

0 ≤ ε2|BU = ε3) = P(B ′
ε2 ≤ 0).

Also, P(B ′
ε2 > ε3|BU = ε3) = 1/2. Therefore, P(0 < B ′

ε2 < ε3|BU = ε3) = [1 −
P(τ ′

0 ≤ ε2|BU = ε3)]/2. It follows that

P(D3) ≤ P(τ ′
0 > ε2|BU = ε3)

= 2P(0 < B ′
ε2 < ε3|BU = ε3)

≤ 2ε3
√

2πε2
= ε2

√
2

π
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and the result follows. �

LEMMA 6.9. Let Ex denote expectation for the Brownian motion (Bt )t≥0
starting from B0 = x. Let

u(x) = Ex

[
exp

(
−γ

2

∫ V

0

1

1 − Bt

dt

)
1{BV =0}

]
.

Then limx→0 x−1(1 − u(x)) = α, where α is as defined in (1.4).

PROOF. We choose f so that f (0) = 1 and f (1) = 0. Let g(x) = γ /[2(1 −
x)]. Then for 0 < x < 1, we have u(x) = Ex[f (BV ) exp(− ∫ V

0 g(Bs) ds)]. Clearly
u(0) = 1 and u(1) = 0. By the Feynman–Kac formula (see (6.3) on page 161
of [6]), if v : [0,1] → R is a bounded continuous function such that v(0) = 1,
v(1) = 0, and 1

2v′′(x) − g(x)v(x) = 0 for x ∈ (0,1), then u(x) = v(x) for x ∈
[0,1]. Note that (6.3) on page 161 of [6] requires g to be bounded on (0,1), which
it is not in this example. However, the result nevertheless holds because g is non-
negative and, therefore, exp(− ∫ t

0 g(Bs) ds) is always in [0,1].
Multiplying by 2(1 − x), we can write the differential equation above as (1 −

x)v′′(x) − γ v(x) = 0. Let

v(x) = c

∞∑
k=1

γ k

k!(k − 1)!(1 − x)k,(6.17)

where c = 1/
∑∞

k=1 γ k/k!(k − 1)!. Note that v(0) = 1 and v(1) = 0. The series
converges absolutely and uniformly on all compact subsets of R and can be differ-
entiated twice term by term, so

(1 − x)v′′(x) = c

∞∑
k=2

γ k

k!(k − 1)!k(k − 1)(1 − x)k−1.

Therefore,

(1 − x)v′′(x) − γ v(x) = c

∞∑
k=1

(
γ k+1

k!(k − 1)!(1 − x)k − γ k+1

k!(k − 1)!(1 − x)k
)

= 0.

Thus, v(x) = u(x) for x ∈ [0,1]. From our formula, it follows that

lim
x→0

1 − u(x)

x
= −u′(0) = c

∞∑
k=1

γ k

(k − 1)!(k − 1)! = α,

as claimed. �

PROOF OF PROPOSITION 6.1. The only difference between gN,j (ε) and P(A)

is that the event A is defined using model M2, in which new type two individuals
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cannot be born while there is an existing individual of type 2 or higher in the pop-
ulation. Therefore, it follows from Lemma 4.3 that |P(A) − gN,j (ε)| � [Nε]r1,m

and, therefore,

lim
N→∞|P(A) − gN,j (ε)| = 0

for all ε > 0. By Lemmas 6.5, 6.6, 6.7 and 6.8,

lim sup
N→∞

∣∣P(A) − (
1 − u(ε)

)∣∣ ≤ Cε2.

Combining these results and multiplying both sides by ε−1 gives

lim sup
N→∞

∣∣ε−1gN,m(ε) − ε−1(
1 − u(ε)

)∣∣ ≤ Cε.

Therefore, by Lemma 6.9,

lim
ε→0

lim inf
N→∞ ε−1gN,m(ε) ≥ lim

ε→0

(
ε−1(

1 − u(ε)
) − Cε

) = α,

lim
ε→0

lim sup
N→∞

ε−1gN,m(ε) ≤ lim
ε→0

(
ε−1(

1 − u(ε)
) + Cε

) = α

and the proposition follows. �

7. Proof of Theorem 3. With Proposition 6.1 established, the rest of the proof
is routine.

LEMMA 7.1. Consider model M1, and let q ′
m be the probability that either

a type m individual is born at some time, or at some time all individuals in the
population have type greater than zero. Then limN→∞ Nq ′

m = α.

PROOF. The probability that the number of individuals of type greater than
zero reaches [εN] is 1/[εN]. If, at the time T when the number of individuals of
nonzero type reaches [εN], we change the type of all these individuals to type 1,
then the probability of either getting a type m individual or eventually having all N

individuals of type greater than zero is gN,m(ε). Since changing the types in this
way can only reduce the probability of interest, we have

q ′
m ≥ 1

[εN]gN,m(ε).

To get an upper bound, note that the probability of either having a type m indi-
vidual that is descended from a type 1 individual at time T or having all N individ-
uals of nonzero type is at most gN,m(ε)/[εN]. The only possibility not accounted
for is that the type m individual could be descended from a type 2 individual that
is born before time T . However, by Lemma 4.4, the proof of which is valid under
our hypotheses by Corollary 4.1, the probability that a type 2 mutation that occurs
while there are fewer than εr−1

1,m individuals in the population of type 1 or higher
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has a type m descendant is at most Cε/N , where we are using that r1,m is O(N).
It follows that

q ′
m ≤ 1

[εN]gN,m(ε) + Cε

N
.

The result follows from Proposition 6.1 by first letting N → ∞ and then letting
ε → 0. �

PROOF OF THEOREM 3. As in the proof of Theorem 2, call ordinary type 1
mutations type 1a, and give each individual of type greater than zero a type 1b
mutation at rate u1. Mutations of type 1a and 1b will both be called type 1 muta-
tions. Let γi be the time of the ith type 1 mutation, so the points (γi)

∞
i=1 form a

rate Nu1 Poisson process on [0,∞). Define a sequence (ζi)
∞
i=1 such that ζi = 1 if

the mutation at time γi is a type 1a mutation and has a type m descendant in the
population at some later time (which will always happen if the mutation fixates).
Let (ζ̃i)

∞
i=1 be a sequence of i.i.d. random variables, independent of the popula-

tion process, such that P(ζ̃i = 1) = q ′
m and P(ζ̃i = 0) = 1 − q ′

m for all i. Let
ζ ′
i = ζi if all individuals at time γi− have type 0, and let ζ ′

i = ζ̃i otherwise. Let
σ ′

m = inf{γi : ζ ′
i = 1}. It is clear from the construction that σ ′

m has the exponential
distribution with rate Nu1q

′
m, so Lemma 7.1 gives

lim
N→∞P(u1σ

′
m > t) = exp(−αt).(7.1)

Let σm = inf{γi : ζi = 1}, which is the first time at which a type 1a mutation
occurs and the individual that gets this mutation will eventually have a type m

descendant. We claim that P(σ ′
m = σm) → 1 as N → ∞. We can only have σ ′

m �=
σm if there is a type 1 mutation at some time γi ≤ σ ′

m such that not all mutations
at time γi− have type 0 and either ζi = 1 or ζ̃i = 1. Note also that in this case
the first such γi must occur before any type 1 mutation fixates, so it suffices to
consider the γi that occur before any fixation. Fix t > 0. The expected number of
type 1 mutations before time u−1

1 t is (Nu1)(u
−1
1 t) = Nt , so by (3.8), the expected

amount of time before u−1
1 t and before any type 1 mutation fixates that there is

an individual of nonzero type in the population is at most C(N logN)t . Therefore,
the expected number of type 1 mutations that occur before this time is at most
C(N2 logN)u1t . If such a birth occurs at time γi , the probability that either ζi

or ζ̃i equals one is at most 2q ′
m, so

P(σm �= σ ′
m < u−1t) ≤ C(N2 logN)u1tq

′
m → 0,

where we are using that u1(N logN) → 0 by (ii) and (6.2) and that q ′
m is O(1/N)

by Lemma 7.1. The fact that P(σ ′
m = σm) → 1 as N → ∞ follows from this result

and (7.1).
It remains only to show that u1(τm − σm) →p 0. When the type 1 muta-

tion at time σm does not fixate, τm − σm is at most the time that it takes be-
fore all descendants of the mutation die out. When this mutation fixates, then
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τm − σm includes both the time to fixation plus the time for one individual to
get m − 1 additional mutations. The probability that a given type 1 mutation takes
time εu−1

1 to fixate or die out is at most Cu1ε
−1 logN , so the probability that

some mutation that occurs before time u−1
1 t takes this long to fixate or die out

is at most C(Nu1)(u
−1
1 t)(u1ε

−1 logN), which approaches zero as N → ∞ be-
cause u1(N logN) → 0. Finally, if a type 1 mutation fixates, then the time un-
til a type m mutation appears can be calculated using the m − 1 case of Theo-
rem 2 with u2, . . . , um in place of u1, . . . , um−1. The hypotheses are satisfied by
the arguments given in Corollary 4.1. Theorem 2 implies that the waiting time is
O(1/(Nu2r2,m)). However, 1/(Nu2r2,m) � u−1

1 because u1/u2 < b−1
1 by (ii) and

Nr2,m → ∞ as shown in the proof of Corollary 4.1. These observations imply
u1(τm − σm) →p 0, as in the proof of Theorem 2. �
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