
Copyright � 2008 by the Genetics Society of America
DOI: 10.1534/genetics.107.082610

Waiting for Two Mutations: With Applications to Regulatory Sequence
Evolution and the Limits of Darwinian Evolution

Rick Durrett*,1 and Deena Schmidt†

*Department of Mathematics and †Center for Applied Mathematics, Cornell University, Ithaca, New York 14853

Manuscript received September 30, 2007
Accepted for publication August 19, 2008

ABSTRACT

Results of Nowak and collaborators concerning the onset of cancer due to the inactivation of tumor
suppressor genes give the distribution of the time until some individual in a population has experienced
two prespecified mutations and the time until this mutant phenotype becomes fixed in the population. In
this article we apply these results to obtain insights into regulatory sequence evolution in Drosophila and
humans. In particular, we examine the waiting time for a pair of mutations, the first of which inactivates an
existing transcription factor binding site and the second of which creates a new one. Consistent with
recent experimental observations for Drosophila, we find that a few million years is sufficient, but for
humans with a much smaller effective population size, this type of change would take .100 million years.
In addition, we use these results to expose flaws in some of Michael Behe’s arguments concerning
mathematical limits to Darwinian evolution.

THERE is a growing body of experimental evidence
that in Drosophila, significant changes in gene

regulation can occur in a short amount of time,
compared to divergence time between species. Ludwig

et al. (1998, 2000, 2005) studied the evolution of the
even-skipped stripe 2 enhancer in four Drosophila spe-
cies (Drosophila melanogaster, D. yakuba, D. erecta, and D.
pseuodoobscura). While expression is strongly conserved,
they found many substitutions in the binding sites for
bicoid, hunchback, Kruppel, and giant, as well as large
differences in the overall size of the enhancer region. In
addition, they uncovered several binding sites that have
been gained and lost among these four species: a
lineage-specific addition of the bicoid-3 binding site
in D. melanogaster that is absent in the other species, a
lineage-specific loss of the hunchback-1 site in D. yakuba,
and the presence of an extra Kruppel site in D.
pseudoobscura relative to D. melanogaster. These differ-
ences are nicely summarized in Figure 2B of Ludwig

et al. (2005).
In a simulation study, Stone and Wray (2001)

estimated the rate of de novo generation of regulatory
sequences from a random genetic background. They
found that for a given six-nucleotide sequence, the time
until it arose in a 2-kb region in some individual was
�5950 years for humans and 24 years for Drosophila.
However, as MacArthur and Brookfield (2004) have
already pointed out, there is a serious problem with
Stone and Wray’s computation. They assumed individ-
uals in the population evolve independently, while in

reality there are significant correlations due to their
common ancestors.

Motivated by this simulation study, Durrett and
Schmidt (2007) have recently given a mathematical
analysis for regulatory sequence evolution in humans,
correcting the calculation mentioned above. They as-
sumed an effective population size of 10,000 and a per
nucleotide mutation rate of m¼ 10�8. In this situation, the
expected number of segregating sites in a 1-kb sequence is
1000(4Nem) ¼ 0.4 so it makes sense to talk about a pop-
ulation consensus sequence. The authors defined this as
the nucleotide at the site if there is no variability in the
population and if the site is variable, the most frequent
nucleotide at that site in the population. Using a gen-
eration time of 25 years, they found that in a 1-kb region,
the average waiting time for words of length six was
100,000 years. For words of length eight, they found that
the average waiting time was 375,000 years when there was
a seven- of eight-letter match to the target word in the
population consensus sequence (an event of probability
�5/16) and 650 million years when there was not.

Fortunately, in biological reality, the match of a
regulatory protein to the target sequence does not have
to be exact for binding to occur. Biological reality is
complicated, with the acceptable sequences for binding
described by position weight matrices that indicate the
flexibility at different points in the sequence. To sim-
plify, we assume that binding will occur to any eight-
letter word that has seven letters in common with the
target word. If we do this, then the mean waiting time
reduces to �60,000 years.

To explain the intuition behind the last result, con-
sider the case of eight-letter words. If all nucleotides are
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equally likely and independent, then using the binomial
distribution we see that a six of eight match to a given
eight-letter target word has probability 63/16,384 �
0.00385, so in a region of 1000 nucleotides, we expect to
find 3.85 such approximate matches in the population
consensus sequence. Simple calculations then show that
the waiting time to improve one of these six of eight
matches to seven of eight has a mean of 60,000 years.
This shows that new regulatory sequences can come
from small modifications of existing sequence.

Extending our previous work on the de novo genera-
tion of binding sites, this article considers the possibility
that in a short amount of time, two changes will occur,
the first of which inactivates an existing binding site, and
the second of which creates a new one. This problem
was studied earlier by Carter and Wagner (2002). In
the next section, we present the model and then a
simpler theoretical analysis based on work of Komarova

et al. (2003) and Iwasa et al. (2004, 2005), who studied
the onset of cancer due to the inactivation of tumor
suppressor genes. Finally, we compare the theory with
simulations and experimental results.

THE MODEL

Consider a population of 2N haploid individuals. The
reader should think of this as the chromosomes of N
diploid individuals evolving under the assumptions of
random union of gametes and additive fitness. However,
since we use the continuous-time Moran model, it is
simpler and clearer to state our results for haploid
individuals.

We start with a homogeneous population of wild-type
individuals. We have two sets of possible mutant ge-
notypes A and B. Wild-type individuals mutate to type
A at rate u1 and type A individuals mutate to type B at
rate u2. We assume there is no back mutation. We think
of the A mutation as damaging an existing transcription
factor binding site and the B mutation as creating a
second new binding site at a different location within
the regulatory region. We assign relative fitnesses 1, r,
and s to wild-type, A mutant, and B mutant individuals,
respectively. See Figure 1 for a diagram of our model.
We used the word damage above to indicate that the
mutation may only reduce the binding efficiency, not
destroy the binding site. However, even if it does, the
mutation need not be lethal. In most cases the B muta-
tion will occur when the number of A mutants is a small
fraction of the population, so most individuals with the
A mutation will also carry a working copy of the binding
site.

We could also assume that the mutations occur in the
other order: B first and then A. This is also a two-stage
process that falls into the general framework of our
analysis below under the appropriate fitness assump-
tions. The problems in population genetics to be solved

are as follows: How long do we have to wait (i) for a type
B mutation to arise in some individual or (ii) for the B
mutant to become fixed in the population? These
problems were investigated by Komarova et al. (2003)
and Iwasa et al. (2004, 2005) for tumor suppressor
genes, whose inactivation can lead to cancer, with A
being the inactivation of one copy of the gene and B the
inactivation of the other. A nice account of these results
can be found in Section 12.4 of Nowak’s (2006) book
on evolutionary dynamics. Here, we apply these results
to estimate the waiting time for a switch between two
transcription factor binding sites, as defined in the
statement of our problem above.

First we need to describe the population genetics
model we are considering. Rather than use the discrete-
time Wright–Fisher model, we use the continuous-time
Moran model. We prefer the Moran process because it is
a birth-and-death chain, which means that the number
of type A individuals increases or decreases by one on
each event. Biologically the Moran model corresponds
to a population with overlapping generations and in the
case of tumor suppressor genes is appropriate for a
collection of cells in an organ that is being maintained
at a constant size.

As the reader will see from the definition, the Moran
process as a genetic model treats N diploids as 2N
haploids and replaces one chromosome at a time. In
this context it is common to invoke random union of
gametes and assume fitnesses are additive, but that is not
necessary. Since homozygous mutants are rare, the fitness
of an A mutant is its fitness in the heterozygous state.
Supposing that the relative fitnesses have been normal-

Figure 1.—An example of our general two-stage mutation
process used in this article is as follows. The regulatory region
contains two possible binding sites, a and b, where a prime
denotes an inactivated site. Wild-type individuals can undergo
a type A point mutation (a b9 / a9 b9 at rate u1), which in-
activates site a, and type A individuals can undergo a type B
point mutation (a9 b9 / a9 b at rate u2), which creates a
new active site b. The relative fitnesses of wild type, A mutant,
and B mutant are 1, r, and s, respectively. Note that in this case,
wild-type individuals cannot produce individuals with a sec-
ond active binding site. For a different example of this gen-
eral process, see p. 955 of Carter and Wagner (2002).
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ized to have maximum value 1, the dynamics may be
described as follows:

Each individual is subject to possible replacement at
rate 1.

A copy is made of an individual chosen at random from
the population.

Mutation changes the copy from wild type to A with
probability u1 and from A to B with probability u2.

If the relative fitness of the proposed new individual
is 1 � q after mutation (where q is the selection
coefficient), then the replacement occurs with prob-
ability 1 � q. Otherwise, nothing happens.

For more on this model, see Section 3.4 of Ewens (2004).

THEORETICAL RESULTS

Neutral case: Returning to the problem, we first
consider the case in which the fitness of the A mutant
r ¼ 1 and the population is of intermediate size as
compared to the mutation rates: that is, one in which
the population size and mutation rates satisfy

1=
ffiffiffiffiffi
u2
p

>2N >1=u1; ð1Þ

where for any numbers a and b, a>b is read ‘‘a is much
less than b’’ and means a/b is small.

Theorem 1. If 2N >1=u1 and 2N ?1=
ffiffiffiffiffi
u2
p

, the proba-
bility P(t) that a B mutation has occurred in some member of
the population by time t is

PðtÞ � 1� expð�2Nu1
ffiffiffiffiffi
u2
p

tÞ; ð2Þ

where � is read ‘‘approximately.’’ If B mutants become fixed
with probability b, then the result for the fixation time is
obtained by replacing u2 by bu2 in (2).

In words, the waiting time tB for the first B mutation
is roughly exponential with mean 1=ð2Nu1

ffiffiffiffiffi
u2
p Þ while

the waiting time TB for B to become fixed is roughly
exponential with mean 1=ð2Nu1

ffiffiffiffiffiffiffiffi
u2b
p

Þ. Hence, if b , 1,
this increases the waiting time by a factor of 1=

ffiffiffi
b
p

rather
than the 1/b that one might naively expect. The last
conclusion in the theorem should be intuitive since
successful mutations (i.e., those that go to fixation)
occur at rate bu2. In each of the next three theorems,
the results for the fixation time can be obtained by
replacing u2 by bu2 in the waiting-time result.

Sketch of proof. The mathematical proof of this result
involves some technical complications, but the under-
lying ideas are simple. Here and in what follows, readers
not interested in the underlying theory can skip the
proof sketches. A simple calculation, see Section 2 of
Iwasa et al. (2005), shows that the probability a type A
mutant will give rise to a type B mutant before its family
dies out is asymptotically

ffiffiffiffiffi
u2
p

. Since type A mutations

arise at rate 2Nu1, the time sB until an A mutant arises
that will have a descendant of type B is exponential with
mean 1=ð2Nu1

ffiffiffiffiffi
u2
p Þ. The amount of time after sB it takes

for the B mutant to appear, tB – sB, is of order 1=
ffiffiffiffiffi
u2
p

.
Since 2Nu1>1, the difference tB – sB is much smaller
than sB and the result holds for tB as well.

To give some intuition about how the B mutation
arises, we note that in the neutral case, r¼ 1, the number
of copies of the A allele increases and decreases with
equal probability, so if we ignore the transitions that do
not change the number of mutant alleles, the result is an
unbiased random walk. Since such a walk represents the
winnings of a gambler playing a fair game, the proba-
bility that the number will rise to k ¼ 1=

ffiffiffiffiffi
u2
p

before
hitting 0 is 1/k. When this occurs, the central limit
theorem of probability theory implies that the number
of steps required to return to 0 is of order k2 ¼ 1/u2,
since this requires the random walk to move by k, and by
the central limit theorem this will take time of order k2.
Since B mutants have probability u2, there is a reason-
able chance of having a B mutation before the number
of A mutants returns to 0. n

Iwasa et al. (2004) call this stochastic tunneling, since the
second mutant (type B) arises before the first one (type A)
fixes. Carter and Wagner (2002) had earlier noted this
possibility but they did not end up with a very nice
formula for the average fixation time; see their (2.2) and
the formulas for the constants given in their Appendix.
The assumption 1=

ffiffiffiffiffi
u2
p

>2N implies that throughout the
scenario we have just described, the number of type A
mutants is a small fraction of the population, so we can
ignore the probability that the A mutants become fixed in
the population. This means that in an intermediate-sized
population (1) with r ¼ 1, B mutations arise primarily
through stochastic tunneling.

In contrast to populations of intermediate size,
populations that are small (compared to the mutation
rates) have fixation of the type A mutation before the
type B mutation arises.

Theorem 2. If 2N >1=u1 and 2N >1=
ffiffiffiffiffi
u2
p

, then the
probability P(t) that a B mutation has occurred in some member
of the population by time t is

PðtÞ � 1� expð�u1tÞ: ð3Þ

Sketch of proof. To explain this, we note that the waiting
times between A mutations are exponential with mean
1/(2Nu1) and each one leads to fixation with probability
1/(2N), so the time we have to wait for the first A
mutation that will go to fixation is exponential with
mean 1/u1. The condition 2N >1=

ffiffiffiffiffi
u2
p

implies that it is
unlikely for the B mutation to appear before A reaches
fixation. The average time required for an A mutation to
reach fixation conditional on fixation, which is 2N by a
result of Kimura and Ohta (1969), and the average
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time required for the B mutation to appear after fixation
of the A mutation, which is 1/(2Nu2), are each short
compared to 1/u1 and can be ignored. n

When 2N and 1=
ffiffiffiffiffi
u2
p

are about the same size, fixation
of an A mutation and stochastic tunneling are both
possible situations in which a type B mutation can arise,
and the analysis becomes very complicated. Iwasa et al.
(2005) obtained some partial results; see their Equation
15. Recent work of Durrett et al. (2008) addresses this
borderline case and gives the following result.

Theorem 3. If 2N >1=u1 and 2N
ffiffiffiffiffi
u2
p

/
ffiffiffi
g
p

, then the
probability P(t) that a B mutation has occurred in some member
of the population by time t is P(t)� 1 – exp(– a(g)u1t), where

aðgÞ ¼
X‘

k¼1

gk

ðk � 1Þ!ðk � 1Þ!

�X‘

k¼1

gk

k!ðk � 1Þ! . 1: ð4Þ

Hence, the mean waiting time in this case is 1/(a(g)u1).

To summarize the first three theorems, if 2N >1=u1,
then the waiting time for the first B mutant to appear in
the population, tB, is approximately exponential under
the following conditions:

Deleterious A mutants: Suppose now that A mutants
have fitness r , 1, and return to the case of intermediate
population size defined by (1).

Theorem 4. Suppose 1=
ffiffiffiffiffi
u2
p

>2N >1=u1 and that
1� r � r

ffiffiffiffiffi
u2
p

, where r is a constant that measures the
strength of selection against type A mutants. The probability
P(t) that the B mutation has occurred in some member of the
population by time t is

PðtÞ � 1� expð�2Nu1R
ffiffiffiffiffi
u2
p

tÞ;

where R ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 4

q
� r

� �
: ð5Þ

The proof of this is somewhat involved so we refer the
reader to Iwasa et al. (2005) for details. In words, the
conclusion says that the waiting time in the nonneutral
case is still exponential, but the mean has been mul-
tiplied by 1/R. Note that when r¼ 0, R¼ 1, which is the
neutral case. Thus, A mutants are essentially neutral
when r � 0, which is true when 1� r>

ffiffiffiffiffi
u2
p

. When r is
large,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 4

p
� r 1 2=r [since (r 1 2/r)2 ¼ r2 1 4 1

4/r2] and we have 1/R � r. Therefore, as r increases
the waiting time increases.

Kimura (1985) considered compensatory mutations
that are related to the situation studied in Theorem 4.
His model has four genotypes AB, A9B, AB9, and A9B9,
where A and B are wild-type alleles with corresponding
mutant alleles A9 and B9. The single mutant genotypes
A9B and AB9 have fitness 1 – s while AB and A9B9 have
fitness 1. Assuming s?v, the mutation rate, he used
diffusion theory to conclude that the average time for
the fixation of the double mutant was, see his (16) and
(17) and take h ¼ 0,

4Ne

ð1

0
expð�Sh2=2Þh�V

ðh

0
expðSj2=2Þj

V�1

1� j
djdh;

where S¼ 4Nes and V ¼ 4Nev. Evaluating the expression
above numerically, he concluded that the fixation time
was surprisingly short. Note that his result covers a
different range of parameters since Theorem 4 suppo-
ses 4Nv>1. However, stochastic tunneling still occurs.
Kimura shows that the frequency of single mutants
remains small until the second mutation occurs.

SIMULATION RESULTS

The results in the previous section are theorems
about the limit as N / ‘, and their proofs are based
on arguing that various complications can be ignored,
so we now turn to simulations to show that the appro-
ximations are good for even relatively small values of
N. We use a standard algorithm, described in the next
paragraph, to simulate the continuous-time Markov
chain X(t) that counts the number of A mutants in the
population at time t. Readers not interested in the
details of our simulation algorithm can skip the next
paragraph.

Let T0¼ 0 and for m $ 1 let Tm be the time of the mth
jump of X(t). If X(Tm)¼ 0, we let tm11 be exponential with
mean1/(2Nu1)andsetTm11¼Tm 1 tm11 andX(Tm11)¼1.
If X(Tm) ¼ k with 1 # k , 2N, then we let tm11 be
exponential with mean 1/(pk 1 qk 1 rk), where pk is the
rate of jumps to k 1 1, qk is the rate of jumps to k – 1, and
rk is the rate an A mutant replaces an A mutant, as
defined in the following equations. Note that the second
term in pk accounts for new A mutants that enter the
population:

k /k 1 1 at rate pk ¼
kð2N � kÞ

2N
1 ð2N � kÞu1

k /k � 1 at rate qk ¼
kð2N � kÞ

2N

k /k at rate rk ¼
k2

2N
:

We set X(Tm11) ¼ k 1 1 with probability pk/(pk 1 qk 1

rk), X(Tm11) ¼ k with probability rk/(pk 1 qk 1 rk), and
X(Tm11)¼ k – 1 with probability qk/(pk 1 qk 1 rk). In the
first two cases there is a probability u2 of a B mutation.
We stop the simulation the first time a B mutant appears

Assumption EtB

Theorem 1 2N ?1=
ffiffiffiffiffi
u2
p

1=2Nu1
ffiffiffiffiffi
u2
p

Theorem 2 2N >1=
ffiffiffiffiffi
u2
p

1/u1

Theorem 3 2N
ffiffiffiffiffi
u2
p

/
ffiffiffi
g
p

1/(a(g)u1).
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or X(Tm) ¼ 2N. If an A mutant goes to fixation, we add
an exponential with mean 1/(2Nu2) to the final time to
simulate waiting for the B mutation to appear.

Let n ¼ 2N. Since our aim is to show that the
theoretical predictions work well even for small values
of n, we will, in most cases, consider the values n¼ 1000
and n ¼ 10,000. Table 1 gives the seven simulation
scenarios we study. Table 2 compares the predicted
mean time from Theorem 1 with the average time found
in 10,000 replications of each simulation. In making
predictions for the examples, we consider that any
numbers a and b satisfy a>b if a/b # 1/10. In case 3
our assumption 1=

ffiffiffiffiffi
u2
p

>n>1=u1 (Equation 1) about
intermediate population size holds, and we can see that
the simulated mean is very close to the predicted mean.
In cases 1 and 5, we replace the upper and lower in-
equalities in (1) by equality, respectively, so in each case
one of the two assumptions is not valid. Cases 2 and 4 are
intermediate, meaning that the upper and lower in-
equalities in (1), respectively, do not quite hold since

the ratios are 1/4. Yet, cases 2 and 4 show good
agreement with the predicted mean.

The last two cases are specific examples related to
regulatory sequence evolution in Drosophila and hu-
mans, which we consider in more detail in the next
section. The Drosophila effective population size is too
large to use the true value in the simulations, but this is
feasible for humans. In addition, we multiply u2 by 1

3 for
these special cases so that the ratio u1/u2 ¼ 30. This
comes from our assumption that a mutation at any
position in the binding site will damage it, but to create a
new binding site we require one position to mutate to
the correct letter. Given a 10-letter target binding site,
then u1 is 3 3 10 times bigger than u2.

In Figure 2, we plot the observed waiting time/
predicted mean for case 3 and see a good fit to the ex-
ponential distribution, which agrees with our theoreti-
cal prediction. Figure 3 corresponds to case 1 and shows
that the tail of the distribution looks exponential, but
the simulated mean time is �1.5 times larger than the
predicted mean. This is caused by the fact that since u1¼
1/(2N), the time tB – sB we have to wait for the B mutant
to be produced is of the same order of magnitude as sB.
Hence, the total waiting time tB is significantly larger
than sB.

To explain the observed shape of the distribution,
recall from the sketch of the proof of Theorem 1 that sB

has exactly an exponential distribution. Adding the
independent random variable tB – sB, which we assume
has density g(s), yields the following distribution for tB,
ðt

0
e�ðt�sÞg ðsÞds ¼ e�t

ðt

0
esg ðsÞds � te�t g ð0Þ when t is small

since the integrand is close to g(0) for all s 2 [0, t], and
consequently the exponential fit is not good for small t.

TABLE 1

Parameter values for our simulations in terms of n ¼ 2N

Parameters

u1
ffiffiffiffiffi
u2
p

Case 1 1/n 10/n
Case 2 1/4n 10/n
Case 3 1/10n 10/n
Case 4 1/10n 4/n
Case 5 1/10n 1/n
Drosophila 1/2n 10=

ffiffiffi
3
p

n
Humans 2/1000n 2=

ffiffiffi
3
p

n

TABLE 2

Comparison of mean waiting times

Population
size

Predicted
mean

Simulated
mean

Simulated/
predicted

Case 1 1,000 100 156.5 1.565
10,000 1,000 1,559 1.559

Case 2 1,000 400 460.0 1.150
10,000 4,000 4,552 1.138

Case 3 1,000 1,000 1,047 1.048
10,000 10,000 10,414 1.041

Case 4 1,000 2,500 2,492 0.997
10,000 25,000 2,5271 1.011

Case 5 1,000 10,000 7,811 0.781
10,000 100,000 77,692 0.777

Drosophila 1,000 346.4 441.1 1.273
10,000 3,464 4,374 1.263

Humans 20,000 8,660,258 6,464,920 0.747

Mean waiting times for n ¼ 1000 and n ¼ 10,000 are shown
with mutation rates u1 and u2 as defined by each case. The
simulated mean time is compared with the predicted mean
from Theorem 1 and the ratio is given in the last column.
All simulations are done with 10,000 replications.

Figure 2.—Waiting time for case 3 with n ¼ 1000 and u1 ¼
u2 ¼ 0.0001. The assumptions for intermediate population
size as compared to mutation rates (1) hold and, as predicted
by Theorem 1, the waiting time is a good fit to the exponential
distribution.
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Wodarz and Komarova (2005) have done an exact
calculation of the waiting time in the branching process
approximation of the Moran model, which applies to
case 1. As Figure 3 shows, the computation matches the
Moran model simulation exceptionally well.

Figure 4 corresponds to case 5 and yields a simulated
mean of �78% of its predicted value. The curve looks
exponential, but it has the incorrect mean. In this case,
Theorem 3 shows that fixation of an A mutation and
stochastic tunneling are both possible scenarios in
which a B mutation can arise, producing a shorter
waiting time. More specifically, the assumptions of
Theorem 3 hold with g ¼ 1, which gives a ¼ 1.433,
and Figure 4 shows that the exponential distribution
with this rate fits the simulated data reasonably well.

EXPERIMENTAL RESULTS

In the following two examples, we consider a 10-
nucleotide binding site and suppose that transcription
factor binding requires an exact match to its target. We
assume that any mutation within the binding site will
damage it (A mutation) and that at least one 10-
nucleotide sequence exists within the regulatory region
that can be promoted to a new binding site by one
mutation (B mutation). Our previous results show, as
MacArthur and Brookfield (2004) observed earlier,
that the existence of these so-called ‘‘presites’’ is
necessary for the evolution of new binding sites on a
reasonable timescale (Durrett and Schmidt 2007).

Drosophila: We assume a per nucleotide mutation
rate of 10�8 per generation, a simplification of the values
that can be found in the classic article of Drake et al.

(1998) and the recent direct measurements of Haag-
Liautard et al. (2007). If transcription factor binding
involves an exact match to a 10-nucleotide target, then
inactivating mutations have probability u1 ¼ 10�7 and
those that create a new binding site from a 10-letter
word that does not match the target in one position have
probability u2 ¼ 1

3 3 10�8. If the target word is 6–9
nucleotides long or inexact matches are possible, then
these numbers may change by a factor of 2 or 3. Such
details are not very important here, since our aim is to
identify the order of magnitude of the waiting time.

We set the effective population size N ¼ 2.5 3 106,
which agrees with the value given on p. 1612 of
Thorntonand Andolfatto (2006). To apply Theorem
1 we need

1=
ffiffiffiffiffi
u2
p ¼ 1:73 3 104>2N ¼ 5 3 106>1=u1 ¼ 107:

The ratio of the left number to the middle number� 1/
300, but the ratio of the middle number to the one on
the right is 1/2, which says that 2N >1=u1 is not a valid
assumption. Ignoring this for a moment, Theorem 1
predicts a mean waiting time of

1

2Nu1
ffiffiffiffiffi
u2
p ¼ 1:73

5
3 10�61714 � 34; 600 generations;

which translates into 3460 years if we assume 10
generations per year.

Since the assumption 2N >1=u1 is not valid, we use
our simulation result for case 6, which has a small
population size with parameter values of 2Nu1¼ 0.5 and
2N

ffiffiffiffiffi
u2
p ¼ 10=

ffiffiffi
3
p
¼ 5:77 similar to the Drosophila ex-

ample, to see what sort of error we expect (see Tables 1

Figure 3.—Waiting time for case 1 with n ¼ 1000, u1 ¼
0.001, and u2 ¼ 0.0001. The tail of the waiting-time distribu-
tion appears to be exponential, but the simulated mean is
�1.5 times larger than predicted by Theorem 1. The thick
curve corresponds to the waiting-time calculation done by
Wodarz and Komarova (2005). This computation matches
our Moran model simulation exceptionally well.

Figure 4.—Waiting time for case 5 with n ¼ 1000, u1 ¼
0.0001, and u2 ¼ 0.000001. The simulated mean is only
�78% of the mean predicted by Theorem 1; however, the
waiting-time distribution still is approximately exponential.
Theorem 3 holds with g¼ 1 so a¼ 1.433, and the exponential
with this rate gives a reasonable fit to the simulated data.
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and 2). We see that in the simulation, the observed
mean is �25% higher than the theoretical mean, so
adding 25% to the prediction gives a mean waiting time
of 4325 years.

A second and more important correction to our
prediction is that Theorem 1 assumes that the A
mutation is neutral and the B mutation is strongly
advantageous. If we make the conservative assumption
that the B mutation is neutral, then the fixation
probability b ¼ 1/2N ¼ 2 3 10�7, and by Theorem 1
the waiting time increases by a factor of 1=

ffiffiffi
b
p
� 2200 to

�9 million years. If the B mutation is mildly advanta-
geous, i.e., s – 1 ¼ 10�4, then b � 10�4 and the waiting
time increases by a factor of only 100 to 400,000 years.

If we assume that A mutants have fitness r , 1 where
1� r>

ffiffiffiffiffi
u2
p ¼ 5:78 3 10�5, then Theorem 4 implies that

the waiting time is not changed, but if ð1� r Þ= ffiffiffiffiffi
u2
p ¼ r,

then the waiting time is increased by a factor
2=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 4

p
� rÞ � r if r is large. If we use the value of

1 – r ¼ 10�4, the increase is roughly a factor of 2. From
this we see that if both mutations are almost neutral (i.e.,
relative fitnesses r� 1 – 10�4 and s� 1 1 10�4), then the
switch between two transcription factor binding sites
can be done in ,1 million years. This is consistent with
the results for the even-skipped stripe 2 enhancer men-
tioned earlier.

Humans: We now show that two coordinated changes
that turn off one regulatory sequence and turn on
another without either mutant becoming fixed are
unlikely to occur in the human population. We assume
a mutation rate of 10�8, again see Drake et al. (1998),
and an effective population size of N ¼ 104 because this
makes the nucleotide diversity 4Nem close to the obser-
ved value of 0.1%. If we again assume that transcription
factor binding involves an exact match to a 10-nucleo-
tide target, then inactivating mutations have probability
u1¼ 10�7, and those that create a new binding site from
a 10-letter word that does not match the target in one
position have probability u2 ¼ 3.3 3 10�9. For the
assumptions of Theorem 1 to be valid we need

1=
ffiffiffiffiffi
u2
p ¼ 1:73 3 104>2N ¼ 2 3 104>1=u1 ¼ 107:

The ratio of the middle number to the one on the right
is 1/500, but the ratio of the left number to the middle
one � 1.

Ignoring for the moment that one of the assumptions
is not satisfied, Theorem 1 predicts a mean waiting time
of

1

2Nu1
ffiffiffiffiffi
u2
p ¼ 1:73

2
3 107 ¼ 8:66 3 106 generations:

Multiplying by 25 years per generation gives 216 million
years.

As shown in Tables 1 and 2, we have simulation results for
humans using the exact parameters above. In 10,000 re-
plications, the simulation mean is 6.46 million generations,

which is only �75% of the predicted value. Multiplying
by 0.75 reduces the mean waiting time to 162 million
years, still a very long time. Our previous work has shown
that, in humans, a new transcription factor binding site
can be created by a single mutation in an average of
60,000 years, but, as our new results show, a coordinated
pair of mutations that first inactivates a binding site and
then creates a new one is very unlikely to occur on a
reasonable timescale.

To be precise, the last argument shows that it takes a
long time to wait for two prespecified mutations with the
indicated probabilities. The probability of a seven of
eight match to a specified eight-letter word is 8(3/4)(1/
4)7 � 3.7 3 10�4, so in a 1-kb stretch of DNA there is
likely to be only one such match. However, Lynch (2007,
see p. 805) notes that transcription factor binding sites
can be found within a larger regulatory region (104 – 106

bp) in humans. If one can search for the new target
sequence in 104 – 106 bp, then there are many more
chances. Indeed since (1/4)8� 1.6 3 10�5, then in 106 bp
we expect to find 16 copies of the eight-letter word.

The edge of evolution? Our final example of waiting
for two mutations concerns the emergence of chloro-
quine resistance in P. falciparum. Genetic studies have
shown, see Wooton et al. (2002), that this is due to
changes in a protein PfCRT and that in the mutant
strains two amino acid changes are almost always
present—one switch at position 76 and another at
position 220. This example plays a key role in the
chapter titled ‘‘The mathematical limits of Darwinism’’
in Michael Behe’s book, The Edge of Evolution (Behe

2007).
Arguing that (i) there are 1 trillion parasitic cells in an

infected person, (ii) there are 1 billion infected persons
on the planet, and (ii) chloroquine resistance has arisen
only 10 times in the past 50 years, he concludes that the
odds of one parasite developing resistance to chloro-
quine, an event he calls a chloroquine complexity cluster
(CCC), are �1 in 1020. Ignoring the fact that humans
and P. falciparum have different mutation rates, he then
concludes that ‘‘On the average, for humans to achieve a
mutation like this by chance, we would have to wait a
hundred million times ten million years’’ (Behe 2007,
p. 61), which is 5 million times larger than the calcu-
lation we have just given.

Indeed his error is much worse. To further sensation-
alize his conclusion, he argues that ‘‘There are 5000
species of modern mammals. If each species had an
average of a million members, and if a new generation
appeared each year, and if this went on for two hundred
million years, the likelihood of a single CCC appearing
in the whole bunch over that entire time would only be
about 1 in 100’’ (Behe 2007, p. 61). Taking 2N¼ 106 and
m1 ¼ m2 ¼ 10�9, Theorem 1 predicts a waiting time of
31.6 million generations for one prespecified pair of
mutations in one species, with

ffiffiffiffiffi
u2
p

having reduced the
answer by a factor of 31,600.
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We are certainly not the first to have criticized Behe’s
work. Lynch (2005) has written a rebuttal to Behe and
Snoke (2004), which is widely cited by proponents of
intelligent design (see the Wikipedia entry on Michael
Behe). Behe and Snoke (2004) consider evolutionary
steps that require changes in two amino acids and argue
that to become fixed in 108 generations would require a
population size of 109. One obvious problem with their
analysis is that they do their calculations for N ¼ 1
individual, ignoring the population genetic effects that
produce the factor of

ffiffiffiffiffi
u2
p

. Lynch (2005) also raises
other objections.

CONCLUSIONS

For population sizes and mutation rates appropriate
for Drosophila, a pair of mutations can switch off one
transcription factor binding site and activate another on
a timescale of several million years, even when we make
the conservative assumption that the second mutation
is neutral. This theoretical result is consistent with the
observation of rapid turnover of transcription factor
binding sites in Drosophila and gives some insight into
how these changes might have happened. Our results
show that when two mutations with rates u1 and u2 have
occurred and

1=
ffiffiffiffiffi
u2
p

>2N >1=u1;

then the first one will not have gone to fixation before
the second mutation occurs, and indeed A mutants will
never be more than a small fraction of the overall
population. In this scenario, the A mutants with fitness r
are significantly deleterious if ð1� r Þ= ffiffiffiffiffi

u2
p

is large, a
much less stringent condition than the usual condition
that 2N(1 – r) is large. Also, the success probability of
the B mutant is dictated by its fitness relative to the wild
type rather than relative to the A mutant. This follows
because the fraction of A mutants in the population
is small when the B mutant arises, and hence most
individuals are wild type at that time.

The very simple assumptions we have made about the
nature of transcription factor binding and mutation
processes are not crucial to our conclusions. Our results
can be applied to more accurate models of binding site
structure and mutation processes whenever one can
estimate the probabilities u1 and u2. However, the
assumption of a homogeneously mixing population of
constant size is very important for our analysis. One
obvious problem is that Drosophila populations un-
dergo large seasonal fluctuations, providing more
opportunities for mutation when the population size
is large and a greater probability of fixation of an A
mutation during the recurring bottlenecks. Thus, it is
not clear that one can reduce to a constant size
population or that the effective population size com-
puted from the nucleotide diversity is the correct

number to use for the constant population size. A
second problem is that in a subdivided population, A
mutants may become fixed in one subpopulation, giving
more opportunities for the production of B mutants or
perhaps leading to a speciation event. It is difficult to
analyze these situations mathematically, but it seems
that each of them would increase the rate at which
changes occur. In any case one would need to find a
mechanism that changes the answer by a significant
factor to alter our qualitative conclusions.
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